Patents by Inventor Tyson Clark

Tyson Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9528107
    Abstract: Methods are provided for reducing the complexity of a population of nucleic acids prior to performing an analysis of the nucleic acids, e.g., sequence analysis. The methods result in a subset of the initial population enriched for a target region, which is typically located within one or more target fragments. The methods are particularly useful for analyzing populations having a high degree of complexity, e.g., chromosomal-derived DNA, whole genomic DNA, or mRNA populations.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: December 27, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Thang Tat Pham, Yu-Chih Tsai, Jonas Korlach, Tyson A. Clark, Stephen Turner
  • Patent number: 9475054
    Abstract: Compositions, methods and systems are provided for the isolation of polymerase-nucleic acid complexes. Complexes can be separated from free enzyme by using hook molecules to target single stranded regions on the nucleic acid. Hook oligonucleotides are used to capture polymerase nucleic acid complexes where the nucleic acids comprise circular nucleic acids having a double stranded central region with hairpin regions on each end. Methods for loading such complexes onto substrates and for single molecule sequencing of such complexes are also provided.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: October 25, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Thang Pham, Arunashree Bhamidipati, Kevin Travers, Eric Olivares, Tyson A. Clark, Jonas Korlach
  • Patent number: 9416414
    Abstract: Methods, compositions, and systems are provided that allow for reliable sequencing of the initial sequence region of a sequence of interest. The methods of the invention allow for more reliable barcoding of subpopulations of nucleic acids to be sequenced.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: August 16, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Tyson A. Clark, Jonas Korlach, Cheryl Heiner, Kevin Travers, Erik Miller
  • Publication number: 20160153038
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Application
    Filed: September 23, 2015
    Publication date: June 2, 2016
    Inventors: Benjamin Flusberg, Jonas Korlach, Jeffrey Wegener, Tyson A. Clark, Igor Drasko Vilfan, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Jessica Lee, Lei Jia, Dale Webster, John Lyle, Jeremiah Hanes
  • Publication number: 20160130646
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Application
    Filed: October 2, 2015
    Publication date: May 12, 2016
    Inventors: Jonas Korlach, Stephen Turner, Tyson A. Clark
  • Patent number: 9238836
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 19, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Jonas Korlach, Stephen Turner, Tyson A. Clark
  • Patent number: 9175348
    Abstract: A method for identifying a 5-MeC in a template nucleic is provided. The method comprises providing a template having 5-MeC, converting the 5-MeC into a further modification selected from 5-caC and 5-FC. The converted template is then sequenced, and a change in sequencing is detected that is indicative of the further modification, allowing for identifying the 5-MeC in the template nucleic acid.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: November 3, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Jonas Korlach, Chuan He, Tyson A. Clark, Liang Zhang, Xingyu Lu
  • Patent number: 9175338
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: November 3, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Benjamin Flusberg, Jonas Korlach, Jeffrey Wegener, Tyson A. Clark, Igor Vilfan, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Jessica Lee, Lei Jia, Dale Webster, John Lyle, Jeremiah Hanes, Joseph Puglisi
  • Publication number: 20150118685
    Abstract: Methods, compositions, and systems are provided that allow for reliable sequencing of the initial sequence region of a sequence of interest. The methods of the invention allow for more reliable barcoding of subpopulations of nucleic acids to be sequenced.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventors: Tyson A. Clark, Jonas Korlach, Cheryl Heiner, Kevin Travers, Erik Miller
  • Publication number: 20140179564
    Abstract: Methods are provided for reducing the complexity of a population of nucleic acids prior to performing an analysis of the nucleic acids, e.g., sequence analysis. The methods result in a subset of the initial population enriched for a desired property, or lacking nucleic acids having an undesired property. The methods are particularly useful for analyzing populations having a high degree of complexity, e.g., chromosomal-derived DNA, whole genomic DNA, or mRNA populations. In addition, such methods allow for analysis of pooled samples.
    Type: Application
    Filed: October 31, 2013
    Publication date: June 26, 2014
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Jonas Korlach, Tyson A. Clark, Stephen Turner
  • Publication number: 20140155276
    Abstract: Compositions, methods and systems are provided for the isolation of polymerase-nucleic acid complexes. Complexes can be separated from free enzyme by using hook molecules to target single stranded regions on the nucleic acid. Hook oligonucleotides are used to capture polymerase nucleic acid complexes where the nucleic acids comprise circular nucleic acids having a double stranded central region with hairpin regions on each end. Methods for loading such complexes onto substrates and for single molecule sequencing of such complexes are also provided.
    Type: Application
    Filed: January 9, 2014
    Publication date: June 5, 2014
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Thang Pham, Arunashree Bhamidipati, Kevin Travers, Eric Olivares, Tyson A. Clark, Jonas Korlach
  • Publication number: 20140134610
    Abstract: Methods are provided for reducing the complexity of a population of nucleic acids prior to performing an analysis of the nucleic acids, e.g., sequence analysis. The methods result in a subset of the initial population enriched for a target region, which is typically located within one or more target fragments. The methods are particularly useful for analyzing populations having a high degree of complexity, e.g., chromosomal-derived DNA, whole genomic DNA, or mRNA populations.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 15, 2014
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Thang-Tat Pham, Yu-Chih Tsai, Jonas Korlach, Tyson A. Clark, Stephen Turner
  • Patent number: 8658364
    Abstract: Compositions, methods and systems are provided for the isolation of polymerase-nucleic acid complexes. Complexes can be separated from free enzyme by using hook molecules to target single stranded regions on the nucleic acid. Active complexes can be isolated from mixtures having both active and inactive complexes by initiating nucleic acid synthesis so as to open up a portion of a double stranded region rendering that region single stranded. Hook molecules are targeted to bind the sequences that are thus exposed. The hook molecules bound to active polymerase-nucleic acid complex are isolated, and the active polymerase-nucleic acid complexes released.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: February 25, 2014
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Thang Pham, Arunashree Bhamidipati, Kevin Travers, Eric Olivares, Tyson A. Clark, Jonas Korlach
  • Publication number: 20140004511
    Abstract: A method for identifying a 5-MeC in a template nucleic is provided. The method comprises providing a template having 5-MeC, converting the 5-MeC into a futher modification selected from 5-caC and 5-FC. The converted template is then sequenced, and a change in sequencing is detected that is indicative of the further modification, allowing for identifying the 5-MeC in the template nucleic acid.
    Type: Application
    Filed: April 23, 2013
    Publication date: January 2, 2014
    Applicants: University of Chicago, Pacific Biosciences of California, Inc.
    Inventors: Jonas Korlach, Chuan He, Tyson A. Clark, Liang Zhang, Xingyu Lu
  • Publication number: 20130303385
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 14, 2013
    Inventors: Jonas Korlach, Stephen Turner, Tyson A. Clark
  • Publication number: 20120322666
    Abstract: Compositions, methods and systems are provided for the isolation of polymerase-nucleic acid complexes. Complexes can be separated from free enzyme by using hook molecules to target single stranded regions on the nucleic acid. Active complexes can be isolated from mixtures having both active and inactive complexes by initiating nucleic acid synthesis so as to open up a portion of a double stranded region rendering that region single stranded. Hook molecules are targeted to bind the sequences that are thus exposed. The hook molecules bound to active polymerase-nucleic acid complex are isolated, and the active polymerase-nucleic acid complexes released.
    Type: Application
    Filed: March 22, 2012
    Publication date: December 20, 2012
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Thang Pham, Arunashree Bhamidipati, Kevin Travers, Eric Olivares, Tyson A. Clark, Jonas Korlach
  • Publication number: 20120185178
    Abstract: Methods and software products for analysis of alternative splicing are disclosed. In general the methods involve normalizing probe set or exon intensity to an expression level measurement of the gene. The methods may be used to identify tissue-specific alternative splicing events.
    Type: Application
    Filed: March 27, 2012
    Publication date: July 19, 2012
    Applicant: AFFYMETRIX, INC.
    Inventors: Alan Williams, Simon Cawley, John E. Blume, Hui Wang, Tyson Clark
  • Patent number: 8170808
    Abstract: Methods and software products for analysis of alternative splicing are disclosed. In general the methods involve normalizing probe set or exon intensity to an expression level measurement of the gene. The methods may be used to identify tissue-specific alternative splicing events.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: May 1, 2012
    Assignee: Affymetrix, Inc.
    Inventors: Alan J. Williams, Simon Cawley, John E. Blume, Hui Wang, Tyson A. Clark
  • Publication number: 20110208500
    Abstract: Methods and software products for analysis of alternative splicing are disclosed. In general the methods involve normalizing probe set or exon intensity to an expression level measurement of the gene. The methods may be used to identify tissue-specific alternative splicing events.
    Type: Application
    Filed: May 4, 2011
    Publication date: August 25, 2011
    Applicant: AFFYMETRIX, INC.
    Inventors: Alan Williams, Simon Cawley, John E. Blume, Hui Wang, Tyson Clark
  • Publication number: 20110183320
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Application
    Filed: November 12, 2010
    Publication date: July 28, 2011
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Benjamin Flusberg, Jonas Korlach, Jeffrey Wegener, Tyson A. Clark, Igor Vilfan, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Jessica Lee, Lei Jia, Dale Webster, John Lyle, Jeremiah Hanes, Joseph Puglisi