Patents by Inventor Tzeng-Feng Liu

Tzeng-Feng Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10167528
    Abstract: A novel FeMnAlC alloy, comprising 23˜34 wt. % Mn, 6˜12 wt. % Al, and 1.4˜2.2 wt. % C with the balance being Fe, is disclosed. The as-quenched alloy contains an extremely high density of nano-sized (Fe,Mn)3AlCx carbides (??-carbides) formed within austenite matrix by spinodal decomposition during quenching. With almost equivalent elongation, the yield strength of the present alloys after aging is about 30% higher than that of the optimally aged FeMnAlC (C?1.3 wt. %) alloy systems disclosed in prior arts. Moreover, the as-quenched alloy is directly nitrided at 450˜550° C., the resultant surface microhardness and corrosion resistance in 3.5% NaCl solution are far superior to those obtained previously for the optimally nitrided commercial alloy steels and stainless steels, presumably due to the formation of a nitrided layer consisting predominantly of AlN.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: January 1, 2019
    Assignee: APOGEAN METAL CO., LTD.
    Inventor: Tzeng-Feng Liu
  • Publication number: 20170107588
    Abstract: A novel FeMnAlC alloy, comprising 23˜34 wt. % Mn, 6˜12 wt. % Al, and 1.4˜2.2 wt. % C with the balance being Fe, is disclosed. The as-quenched alloy contains an extremely high density of nano-sized (Fe,Mn)3AlCx carbides (??-carbides) formed within austenite matrix by spinodal decomposition during quenching. With almost equivalent elongation, the yield strength of the present alloys after aging is about 30% higher than that of the optimally aged FeMnAlC (C?1.3 wt. %) alloy systems disclosed in prior arts. Moreover, the as-quenched alloy is directly nitrided at 450˜550° C., the resultant surface microhardness and corrosion resistance in 3.5% NaCl solution are far superior to those obtained previously for the optimally nitrided commercial alloy steels and stainless steels, presumably due to the formation of a nitrided layer consisting predominantly of AlN.
    Type: Application
    Filed: December 23, 2016
    Publication date: April 20, 2017
    Inventor: Tzeng-Feng LIU
  • Patent number: 9528177
    Abstract: A novel FeMnAlC alloy, comprising 23˜34 wt. % Mn, 6˜12 wt. % Al, and 1.4˜2.2 wt. % C with the balance being Fe, is disclosed. The as-quenched alloy contains an extremely high density of nano-sized (Fe,Mn)3AlCx carbides (??-carbides) formed within austenite matrix by spinodal decomposition during quenching. With almost equivalent elongation, the yield strength of the present alloys after aging is about 30% higher than that of the optimally aged FeMnAlC (C?1.3 wt. %) alloy systems disclosed in prior arts. Moreover, the as-quenched alloy is directly nitrided at 450˜550° C., the resultant surface microhardness and corrosion resistance in 3.5% NaCl solution are far superior to those obtained previously for the optimally nitrided commercial alloy steels and stainless steels, presumably due to the formation of a nitrided layer consisting predominantly of AlN.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: December 27, 2016
    Assignee: Apogean Metal Incorporation
    Inventor: Tzeng-Feng Liu
  • Publication number: 20110061772
    Abstract: The present invention discloses a low-density high-toughness alloy and the fabrication method thereof. The alloy of the present invention consists essentially of: by weight percent, equal to or greater than 23% but lower than or equal to 33% manganese, equal to or greater than 8.1% but lower than or equal to 9.8% aluminum, equal to or greater than 3% but lower than or equal to 5.0% chromium, equal to or greater than 0.6% but lower than or equal to 1.2% carbon, equal to or greater than 0.1% but lower than or equal to 0.24% silicon and the balance of iron. The golf-club head made from the abovementioned alloy can obtain superior elongation, strength, damping capacity, and corrosion resistance even without any heat treatment, or any hot/cold working, such as forging and rolling; therefore, the fabrication cost thereof can be obviously reduced.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: TZENG-FENG LIU, JIAN-WEI LEE
  • Publication number: 20100003159
    Abstract: The present invention discloses a low-density high-toughness alloy and the fabrication method thereof. The alloy of the present invention consists essentially of: by weight percent, equal to or greater than 23% but lower than or equal to 33% manganese, equal to or greater than 8.1% but lower than or equal to 9.8% aluminum, equal to or greater than 3% but lower than or equal to 5.0% chromium, equal to or greater than 0.6% but lower than or equal to 1.2% carbon, equal to or greater than 0.1% but lower than or equal to 0.24% silicon and the balance of iron. The golf-club head made from the abovementioned alloy can obtain superior elongation, strength, damping capacity, and corrosion resistance even without any heat treatment, or any hot/cold working, such as forging and rolling; therefore, the fabrication cost thereof can be obviously reduced.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 7, 2010
    Inventors: Tzeng-Feng Liu, Jian-Wei Lee
  • Publication number: 20080226490
    Abstract: A low-density alloy and the fabrication method thereof are disclosed. The alloy comprises, in weight percent, equal to or greater than 15 wt. % but lower than or equal to 22.5 wt. % manganese, equal to or greater than 7.2 wt. % but lower than or equal to 9.0 wt. % aluminum, equal to or greater than 5.1 wt. % but lower than or equal to 7.8 wt. % chromium, equal to or greater than 0.6 wt. % but lower than or equal to 1.2 wt. % carbon and the balance of iron. The golf-club head made from the abovementioned alloy can obtain superior elongation, strength, damping capacity, and corrosion resistance even without any hot/cold working process, such as forging, rolling, etc.; therefore, the fabrication cost thereof can be obviously reduced.
    Type: Application
    Filed: October 17, 2006
    Publication date: September 18, 2008
    Inventors: Tzeng-Feng Liu, Jian-Wei Lee
  • Publication number: 20070209738
    Abstract: The present invention relates to a high strength and high toughness alloy with a low density and the method of making thereof. The alloy essentially comprises 15 to 33 wt % of manganese, 6 to 10 wt % of aluminum, 0.6 to 1.2 wt % of carbon, 0.1 to 1.0 wt % of silicon, and the balance of iron. The alloy has excellent properties of a density of 6.6 to 6.9 g/cm3, an elongation of 25 to 70%, and a tensile strength of 100 to 190 ksi. In particularly, and the alloy is useful for golf club heads with excellent properties. Further, the use of the alloy reduces pits and defects generated during the electroplating process of the heads. Therefore, the defect rate of the product is remarkably decreased so that the cost is reduced.
    Type: Application
    Filed: October 23, 2006
    Publication date: September 13, 2007
    Applicant: National Chiao Tung University
    Inventors: Tzeng-Feng Liu, Jian-Wei Lee
  • Publication number: 20070084528
    Abstract: The present invention discloses a low-density high-toughness alloy and the fabrication method thereof. The alloy of the present invention consists essentially of: by weight percent, equal to or greater than 23% but lower than or equal to 33% manganese, equal to or greater than 8.1% but lower than or equal to 9.8% aluminum, equal to or greater than 3% but lower than or equal to 7.8% chromium, equal to or greater than 0.6% but lower than or equal to 1.2% carbon, equal to or greater than 0.1% but lower than or equal to 0.24% silicon and the balance of iron. The golf-club head made from the abovementioned alloy can obtain superior elongation, strength, damping capacity, and corrosion resistance even without any heat treatment, or any hot/cold working, such as forging and rolling; therefore, the fabrication cost thereof can be obviously reduced.
    Type: Application
    Filed: August 25, 2006
    Publication date: April 19, 2007
    Inventors: Tzeng-Feng Liu, Jian-Wei Lee
  • Patent number: 4968357
    Abstract: A hot-rolled alloy steel plate with fully austenitic structure consisting essentially of 4.5 to 10.5 wt % aluminum, 22 to 36 wt % manganese, 0.4 to 1.25 wt % carbon and at least one of the following constituents, 0.06 to 0.50 wt % titanium, 0.02 to 0.20 wt % niobium and 0.10 to 0.40 wt % vanadium, the balance being iron. Among them, there are some special relationships between aluminum and carbon contents: when the aluminum content is below about 9.5 wt %, the carbon content can reach 1.25 wt %, but when the aluminum content is between 9.5-10.5 wt %, the carbon content should be less than 1.10 wt %. The alloys of this invention may further contain the following constituents to improve the strength without remarkable decrease in ductility: up to 0.5 wt % nickel, up to 0.5 wt % chromium, up to 1.2 wt % silicon, up to 0.5 wt % molybdenum and up to 0.5 wt % tungsten. The present invention also relates to a process for manufacturing the hot-rolled alloy steel plate.
    Type: Grant
    Filed: January 18, 1989
    Date of Patent: November 6, 1990
    Assignee: National Science Council
    Inventor: Tzeng-Feng Liu