Patents by Inventor Tzu-Ching Yeh

Tzu-Ching Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10333275
    Abstract: A packaging assembly for a high-speed vertical-cavity surface-emitting laser (VCSEL) mainly applies a lens assembly consisted of several prisms to split a laser beam emitted by a VCSEL element so as to guide a small portion of the laser beam back to a monitor photodiode (MPD) and the rest of the laser beam to travel away along an optical axis. Such a spectacular design of the lens assembly can not only relieve the VCSEL element from a position right under the optical axis, but can also reduce signal loss by shorting a length of a bonding wire for a corresponding pin through disposing the VCSEL element further close to the corresponding pin. Thereupon, a defect of lights reflected from a lens or a translucent plate on a cap can be substantially improved.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: June 25, 2019
    Assignee: True Light Corporation
    Inventors: Tzu-Ching Yeh, Yu-Fu Wu, Cheng-Ta Chen
  • Publication number: 20190081455
    Abstract: A packaging assembly for a high-speed vertical-cavity surface-emitting laser (VCSEL) mainly applies a lens assembly consisted of several prisms to split a laser beam emitted by a VCSEL element so as to guide a small portion of the laser beam back to a monitor photodiode (MPD) and the rest of the laser beam to travel away along an optical axis. Such a spectacular design of the lens assembly can not only relieve the VCSEL element from a position right under the optical axis, but can also reduce signal loss by shorting a length of a bonding wire for a corresponding pin through disposing the VCSEL element further close to the corresponding pin. Thereupon, a defect of lights reflected from a lens or a translucent plate on a cap can be substantially improved.
    Type: Application
    Filed: October 10, 2017
    Publication date: March 14, 2019
    Applicant: TRUELIGHT CORPORATION
    Inventors: TZU-CHING YEH, YU-FU WU, CHENG-TA CHEN
  • Patent number: 10191236
    Abstract: A high-speed multi-channel optical transmitter module includes a plurality of laser-diode (LD) components, a plurality of photo-diode (PD) components, an MT ferrule, and a waveguide component. These components are firstly packaged as sub-modules individually, and then these sub-modules are packaged to form the high-speed multi-channel optical transmitter module. Therefore, the amount of individual components contained in the module is decreased, the complexity of structure is simplified, the precision of positioning is increased, such that the time and labors required in the assembling and packaging processes can be decreased, and the defect-free rate of products can be increased.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: January 29, 2019
    Assignee: TrueLight Corporation
    Inventor: Tzu-Ching Yeh
  • Publication number: 20180224616
    Abstract: A high-speed multi-channel optical transmitter module includes a plurality of laser-diode (LD) components, a plurality of photo-diode (PD) components, an MT ferrule, and a waveguide component. These components are firstly packaged as sub-modules individually, and then these sub-modules are packaged to form the high-speed multi-channel optical transmitter module. Therefore, the amount of individual components contained in the module is decreased, the complexity of structure is simplified, the precision of positioning is increased, such that the time and labors required in the assembling and packaging processes can be decreased, and the defect-free rate of products can be increased.
    Type: Application
    Filed: June 15, 2017
    Publication date: August 9, 2018
    Applicant: TrueLight Corporation
    Inventor: TZU-CHING YEH
  • Patent number: 9923103
    Abstract: A detachable package structure that includes an assembly substrate, a first semiconductor substrate, a second semiconductor substrate, and a combination element is provided. The first semiconductor substrate is disposed on the assembly substrate and has a first alignment portion. The second semiconductor substrate has a second alignment portion. The combination element allows the first semiconductor substrate and the second semiconductor substrate to be detachably combined together, such that the first alignment portion and the second alignment portion are aligned and combined.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 20, 2018
    Assignee: Centera Photonics Inc.
    Inventors: Hsu-Liang Hsiao, Guan-Fu Lu, Tzu-Ching Yeh, Chun-Chiang Yen
  • Publication number: 20180045646
    Abstract: The present invention provides system and method for three-dimensionally tracking micro particle motion wherein a dark-field condenser is configured to receive light field emitted from a light source and project the light field on a fluid sample having at least one particle thereby generating a scattered light field associated with the at least one particle, an objective lens is configured to receive the scattered light field, an image capturing unit coupled to the objective lens receives the scattered light field thereby generating at least one image of the fluid sample, and a controller is configured to couple to the image capturing unit for analyzing interference ring pattern corresponding to a specific particle in the at least one image and determining a tracking information associated with the specific particle along three-dimensional direction according to the size and center of the interference ring pattern.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 15, 2018
    Inventors: JYH-JONG SHEEN, Tzu-Ching Yeh, Yin-Hsuan Huang, Hung-Hsiang Chien
  • Publication number: 20170254971
    Abstract: An optical connection module includes a substrate, a light source, an optical detector, at least one first optical channel, at least one second optical channel, an oblique surface and a light guide device. The light source is disposed on the substrate and is configured to emit a first light. The first optical channel is configured to transmit the first light, and the light guide device is configured to guide the first light propagating from the light source into the first optical channel in a manner of light transmission. The optical detector is disposed on the substrate and is configured to receive a second light. The second optical channel is configured to transmit the second light, and the oblique surface is configured to guide the second light propagating from the second optical channel into the optical detector in a manner of reflection.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Po-Kuan SHEN, Tzu-Ching YEH, Chin-Ta CHEN, Hsiao-Chin LAN
  • Patent number: 9729243
    Abstract: An optoelectronic transmitter including a semiconductor substrate, at least one laser source, and a high numerical aperture (NA) waveguide is provided. The laser source is disposed on the semiconductor substrate and configured to emit at least one laser beam. The high numerical aperture (NA) waveguide has an NA greater than or equal to 0.5 and is disposed on the semiconductor substrate. At least a part of the laser beam from the laser source enters the high NA waveguide, wherein no lens is disposed on the light path of the laser beam between the laser source and the high NA waveguide. An optoelectronic receiver and an optoelectronic transceiver are also provided.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: August 8, 2017
    Assignee: Centera Photonics Inc.
    Inventors: Tzu-Ching Yeh, Hsiao-Chin Lan, Chin-Ta Chen, Po-Kuan Shen
  • Publication number: 20160349451
    Abstract: An optical connection module includes a substrate, an arrayed wavelength grating structure, an optical detector, and an oblique surface. The arrayed wavelength grating structure is disposed on the substrate and the arrayed wavelength grating structure is configured to transmit a light. The optical detector is disposed on the substrate, and the optical detector is configured to detect the light propagating through the arrayed wavelength grating structure. The oblique surface is configured to redirect the light from the arrayed wavelength grating structure to the optical detector.
    Type: Application
    Filed: May 24, 2016
    Publication date: December 1, 2016
    Inventors: Po-Kuan SHEN, Hsiao-Chin LAN, Tzu-Ching YEH, Chin-Ta CHEN, Shang-Jen YU
  • Publication number: 20160315710
    Abstract: An optoelectronic transmitter including a semiconductor substrate, at least one laser source, and a high numerical aperture (NA) waveguide is provided. The laser source is disposed on the semiconductor substrate and configured to emit at least one laser beam. The high numerical aperture (NA) waveguide has an NA greater than or equal to 0.5 and is disposed on the semiconductor substrate. At least a part of the laser beam from the laser source enters the high NA waveguide, wherein no lens is disposed on the light path of the laser beam between the laser source and the high NA waveguide. An optoelectronic receiver and an optoelectronic transceiver are also provided.
    Type: Application
    Filed: April 23, 2015
    Publication date: October 27, 2016
    Inventors: Tzu-Ching Yeh, Hsiao-Chin Lan, Chin-Ta Chen, Po-Kuan Shen
  • Publication number: 20150255635
    Abstract: A detachable package structure that includes an assembly substrate, a first semiconductor substrate, a second semiconductor substrate, and a combination element is provided. The first semiconductor substrate is disposed on the assembly substrate and has a first alignment portion. The second semiconductor substrate has a second alignment portion. The combination element allows the first semiconductor substrate and the second semiconductor substrate to be detachably combined together, such that the first alignment portion and the second alignment portion are aligned and combined.
    Type: Application
    Filed: May 20, 2015
    Publication date: September 10, 2015
    Inventors: Hsu-Liang Hsiao, Guan-Fu Lu, Tzu-Ching Yeh, Chun-Chiang Yen
  • Patent number: 9064988
    Abstract: A photoelectric device package and a detachable package structure are provided. The photoelectric device package includes a bottom-plate, a top-plate, at least one photoelectric device, and at least one light-guiding element. The bottom-plate has a first carrying part and a first substrate part on the first carrying part. The first carrying part has first alignment portions. The first substrate part has second alignment portions. The top-plate has a second carrying part and a second substrate part on the second carrying part. The second carrying part has third alignment portions. The second substrate part has fourth alignment portions. The top-plate and the bottom-plate are assembled by the first and third alignment portions. The first and second substrate parts are positioned by the second and fourth alignment portions. Each photoelectric device is disposed on the first substrate part. Each light-guiding element is disposed between the first and second substrate parts.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: June 23, 2015
    Assignee: Centera Photonics Inc.
    Inventors: Hsu-Liang Hsiao, Guan-Fu Lu, Tzu-Ching Yeh, Chun-Chiang Yen
  • Publication number: 20130270427
    Abstract: A photoelectric device package and a detachable package structure are provided. The photoelectric device package includes a bottom-plate, a top-plate, at least one photoelectric device, and at least one light-guiding element. The bottom-plate has a first carrying part and a first substrate part on the first carrying part. The first carrying part has first alignment portions. The first substrate part has second alignment portions. The top-plate has a second carrying part and a second substrate part on the second carrying part. The second carrying part has third alignment portions. The second substrate part has fourth alignment portions. The top-plate and the bottom-plate are assembled by the first and third alignment portions. The first and second substrate parts are positioned by the second and fourth alignment portions. Each photoelectric device is disposed on the first substrate part. Each light-guiding element is disposed between the first and second substrate parts.
    Type: Application
    Filed: December 20, 2012
    Publication date: October 17, 2013
    Applicant: CENTERA PHOTONICS INC.
    Inventors: Hsu-Liang Hsiao, Guan-Fu Lu, Tzu-Ching Yeh, Chun-Chiang Yen