Patents by Inventor Tzu-Han WANG

Tzu-Han WANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955547
    Abstract: An integrated circuit device includes a gate stack disposed over a substrate. A first L-shaped spacer is disposed along a first sidewall of the gate stack and a second L-shaped spacer is disposed along a second sidewall of the gate stack. The first L-shaped spacer and the second L-shaped spacer include silicon and carbon. A first source/drain epitaxy region and a second source/drain epitaxy region are disposed over the substrate. The gate stack is disposed between the first source/drain epitaxy region and the second source/drain epitaxy region. An interlevel dielectric (ILD) layer disposed over the substrate. The ILD layer is disposed between the first source/drain epitaxy region and a portion of the first L-shaped spacer disposed along the first sidewall of the gate stack and between the second source/drain epitaxy region and a portion of the second L-shaped spacer disposed along the second sidewall of the gate stack.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Jen Pan, Yu-Hsien Lin, Hsiang-Ku Shen, Wei-Han Fan, Yun Jing Lin, Yimin Huang, Tzu-Chung Wang
  • Patent number: 10760077
    Abstract: Aspects of the invention include methods of selectively reducing the deleterious activity of mutant extended trinucleotide repeat containing genes in a cell, as well as compositions used in such methods. The deleterious activity (e.g., toxicity and/or dis-functionality of products encoded thereby) of a mutant extended trinucleotide repeat containing gene may be selectively reduced in a variety of different ways, e.g., by selectively decreasing SPT4 mediated transcriptional activity, by enhancing functionality of proteins encoded thereby, etc. Aspects of the invention further include assays for identifying agents that find use in methods of the invention, e.g. as summarized above. Methods and compositions of the invention find use in a variety of different applications, including the prevention or treatment of disease conditions associated with the presence of genes containing mutant extended trinucleotide repeats, such as Huntington's Disease (HD).
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 1, 2020
    Assignees: The Board of Trustees of the Leland Stanford Junior University, National Yang-Ming University
    Inventors: Tzu-Hao Cheng, Chia-Rung Liu, Tzu-Han Wang, Stanley N. Cohen
  • Publication number: 20180171336
    Abstract: Aspects of the invention include methods of selectively reducing the deleterious activity of mutant extended trinucleotide repeat containing genes in a cell, as well as compositions used in such methods. The deleterious activity (e.g., toxicity and/or dis-functionality of products encoded thereby) of a mutant extended trinucleotide repeat containing gene may be selectively reduced in a variety of different ways, e.g., by selectively decreasing SPT4 mediated transcriptional activity, by enhancing functionality of proteins encoded thereby, etc. Aspects of the invention further include assays for identifying agents that find use in methods of the invention, e.g. as summarized above. Methods and compositions of the invention find use in a variety of different applications, including the prevention or treatment of disease conditions associated with the presence of genes containing mutant extended trinucleotide repeats, such as Huntington's Disease (HD).
    Type: Application
    Filed: December 6, 2017
    Publication date: June 21, 2018
    Inventors: Tzu-Hao Cheng, Chia-Rung Liu, Tzu-Han Wang, Stanley N. Cohen
  • Patent number: 9862947
    Abstract: Aspects of the invention include methods of selectively reducing the deleterious activity of mutant extended trinucleotide repeat containing genes in a cell, as well as compositions used in such methods. The deleterious activity (e.g., toxicity and/or dis-functionality of products encoded thereby) of a mutant extended trinucleotide repeat containing gene may be selectively reduced in a variety of different ways, e.g., by selectively decreasing SPT4 mediated transcriptional activity, by enhancing functionality of proteins encoded thereby, etc. Aspects of the invention further include assays for identifying agents that find use in methods of the invention, e.g. as summarized above. Methods and compositions of the invention find use in a variety of different applications, including the prevention or treatment of disease conditions associated with the presence of genes containing mutant extended trinucleotide repeats, such as Huntington's Disease (HD).
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: January 9, 2018
    Assignees: The Board of Trustees of the Leland Stanford Junior University, National Yang-Ming University
    Inventors: Tzu-Hao Cheng, Chia-Rung Liu, Tzu-Han Wang, Stanley N. Cohen
  • Patent number: 9637741
    Abstract: This invention provides a method for modulating the expression of a first gene in a cell wherein the first gene is one containing more than 36 CAG trinucleotide repeats and encoding a protein that form polyglutamine-mediated protein aggregation. Suppression of the first gene is achieved by reducing the expression of SPT4 gene or SUPT4H gene. It can also be achieved by inhibiting the formation of a Spt4/Spt5 complex or a Supt4h/Supt5h complex. Also provided is a method for identifying an agent useful for modulating the expression and aggregation of CAG-expanded gene product, or treating a polyglutamine disease such as Huntington's disease.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: May 2, 2017
    Assignees: National Yang Ming University, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Tzu-Hao Cheng, Chia-Rung Liu, Tzu-Han Wang, Stanley N. Cohen
  • Publication number: 20160152978
    Abstract: Aspects of the invention include methods of selectively reducing the deleterious activity of mutant extended trinucleotide repeat containing genes in a cell, as well as compositions used in such methods. The deleterious activity (e.g., toxicity and/or dis-functionality of products encoded thereby) of a mutant extended trinucleotide repeat containing gene may be selectively reduced in a variety of different ways, e.g., by selectively decreasing SPT4 mediated transcriptional activity, by enhancing functionality of proteins encoded thereby, etc. Aspects of the invention further include assays for identifying agents that find use in methods of the invention, e.g. as summarized above. Methods and compositions of the invention find use in a variety of different applications, including the prevention or treatment of disease conditions associated with the presence of genes containing mutant extended trinucleotide repeats, such as Huntington's Disease (HD).
    Type: Application
    Filed: December 7, 2015
    Publication date: June 2, 2016
    Inventors: Tzu-Hao Cheng, Chia-Rung Liu, Tzu-Han Wang, Stanley N. Cohen
  • Publication number: 20160116456
    Abstract: This invention provides a method for modulating the expression of a first gene in a cell wherein the first gene is one containing more than 36 CAG trinucleotide repeats and encoding a protein that form polyglutamine-mediated protein aggregation. Suppression of the first gene is achieved by reducing the expression of SPT4 gene or SUPT4H gene. It can also be achieved by inhibiting the formation of a Spt4/Spt5 complex or a Supt4h/Supt5h complex. Also provided is a method for identifying an agent useful for modulating the expression and aggregation of CAG-expanded gene product, or treating a polyglutamine disease such as Huntington's disease.
    Type: Application
    Filed: December 2, 2015
    Publication date: April 28, 2016
    Inventors: Tzu-Hao Cheng, Chia-Rung Liu, Tzu-Han Wang, Stanley N. Cohen
  • Patent number: 9226935
    Abstract: This invention provides a method for modulating the expression of a first gene in a cell wherein the first gene is one containing more than 36 CAG trinucleotide repeats and encoding a protein that form polyglutamine-mediated protein aggregation. Suppression of the first gene is achieved by reducing the expression of SPT4 gene or SUPT4H gene. It can also be achieved by inhibiting the formation of a Spt4/Spt5 complex or a Supt4h/Supt5h complex. Also provided is a method for identifying an agent useful for modulating the expression and aggregation of CAG-expanded gene product, or treating a polyglutamine disease such as Huntington's disease.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: January 5, 2016
    Assignees: NATIONAL YANG MING UNIVERSITY, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Tzu-Hao Cheng, Chia-Rung Lu, Tzu-Han Wang, Stanley N. Cohen
  • Patent number: 9211303
    Abstract: Aspects of the invention include methods of selectively reducing the deleterious activity of mutant extended trinucleotide repeat containing genes in a cell, as well as compositions used in such methods. The deleterious activity (e.g., toxicity and/or dis-functionality of products encoded thereby) of a mutant extended trinucleotide repeat containing gene may be selectively reduced in a variety of different ways, e.g., by selectively decreasing SPT4 mediated transcriptional activity, by enhancing functionality of proteins encoded thereby, etc. Aspects of the invention further include assays for identifying agents that find use in methods of the invention, e.g. as summarized above. Methods and compositions of the invention find use in a variety of different applications, including the prevention or treatment of disease conditions associated with the presence of genes containing mutant extended trinucleotide repeats, such as Huntington's Disease (HD).
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: December 15, 2015
    Assignees: National Yang-Ming University, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Tzu-Hao Cheng, Chia-Rung Liu, Tzu-Han Wang, Stanley N. Cohen
  • Publication number: 20130331437
    Abstract: This invention provides a method for modulating the expression of a first gene in a cell wherein the first gene is one containing more than 36 CAG trinucleotide repeats and encoding a protein that form polyglutamine-mediated protein aggregation. Suppression of the first gene is achieved by reducing the expression of SPT4 gene or SUPT4H gene. It can also be achieved by inhibiting the formation of a Spt4/Spt5 complex or a Supt4h/Supt5h complex. Also provided is a method for identifying an agent useful for modulating the expression and aggregation of CAG-expanded gene product, or treating a polyglutamine disease such as Huntington's disease.
    Type: Application
    Filed: July 8, 2013
    Publication date: December 12, 2013
    Applicant: National Yang Ming University
    Inventors: Tzu-Hao CHENG, Chia-Rung Liu, Tzu-Han Wang, Stanley N. Cohen
  • Publication number: 20130317088
    Abstract: Aspects of the invention include methods of selectively reducing the deleterious activity of mutant extended trinucleotide repeat containing genes in a cell, as well as compositions used in such methods. The deleterious activity (e.g., toxicity and/or dis-functionality of products encoded thereby) of a mutant extended trinucleotide repeat containing gene may be selectively reduced in a variety of different ways, e.g., by selectively decreasing SPT4 mediated transcriptional activity, by enhancing functionality of proteins encoded thereby, etc. Aspects of the invention further include assays for identifying agents that find use in methods of the invention, e.g. as summarized above. Methods and compositions of the invention find use in a variety of different applications, including the prevention or treatment of disease conditions associated with the presence of genes containing mutant extended trinucleotide repeats, such as Huntington's Disease (HD).
    Type: Application
    Filed: December 8, 2011
    Publication date: November 28, 2013
    Applicants: The Board of Trustees of the Leland Stanford Junior University, NATIONAL YANG-MING UNIVERSITY
    Inventors: Tzu-Hao Cheng, Chia-Rung Liu, Tzu-Han Wang, Stanley N. Cohen
  • Patent number: 8569254
    Abstract: This invention provides a method for modulating the expression of a first gene in a cell wherein the first gene is one containing more than 36 CAG trinucleotide repeats and encoding a protein that form polyglutamine-mediated protein aggregation. Suppression of the first gene is achieved by reducing the expression of SPT4 gene or SUPT4H gene. It can also be achieved by inhibiting the formation of a Spt4/Spt5 complex or a Supt4h/Supt5h complex. Also provided is a method for identifying an agent useful for modulating the expression and aggregation of CAG-expanded gene product, or treating a polyglutamine disease such as Huntington's disease.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: October 29, 2013
    Assignee: National Yang Ming University
    Inventors: Tzu-Hao Cheng, Chia-Rung Lu, Tzu-Han Wang, Stanley N. Cohen
  • Publication number: 20120149754
    Abstract: This invention provides a method for modulating the expression of a first gene in a cell wherein the first gene is one containing more than 36 CAG trinucleotide repeats and encoding a protein that form polyglutamine-mediated protein aggregation. Suppression of the first gene is achieved by reducing the expression of SPT4 gene or SUPT4H gene. It can also be achieved by inhibiting the formation of a Spt4/Spt5 complex or a Supt4h/Supt5h complex. Also provided is a method for identifying an agent useful for modulating the expression and aggregation of CAG-expanded gene product, or treating a polyglutamine disease such as Huntington's disease.
    Type: Application
    Filed: May 18, 2011
    Publication date: June 14, 2012
    Applicant: NATIONAL YANG MING UNIVERSITY
    Inventors: Tzu-Hao CHENG, Chia-Rung LIU, Tzu-Han WANG