Patents by Inventor Tzu-Hsien Wang

Tzu-Hsien Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978678
    Abstract: A display device includes a first substrate, a light-emitting element, a light conversion layer, and a color filter layer. The light-emitting element is disposed on the first substrate. The light conversion layer is disposed on the light-emitting element. In addition, the color filter layer is overlapped the light-emitting element and the light conversion layer.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: May 7, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Tung-Kai Liu, Tsau-Hua Hsieh, Wei-Cheng Chu, Chun-Hsien Lin, Chandra Lius, Ting-Kai Hung, Kuan-Feng Lee, Ming-Chang Lin, Tzu-Min Yan, Hui-Chieh Wang
  • Publication number: 20240132040
    Abstract: The disclosure provides an anti-lock brake device including an oil pressure tank, a valve, and a movable component. The oil pressure tank has an accommodation space, an oil inlet channel, and an oil outlet channel connected to the accommodation space. The valve is slidably located in the oil inlet channel and for sealing or opening an oil inlet of the oil inlet channel. The movable component is located in the accommodation space and has a connecting channel corresponding to the oil inlet and an oil outlet of the oil outlet channel. When the movable component is slid to a depressurized position, the movable component is moved away from the valve for sealing the oil inlet, a first volume is produced between the connecting channel and the oil inlet, and a second volume, smaller than the first volume, is removed from between the connecting channel and the oil outlet.
    Type: Application
    Filed: December 6, 2023
    Publication date: April 25, 2024
    Inventors: Po-Hsien HUANG, Tzu-Chang WANG
  • Patent number: 11955547
    Abstract: An integrated circuit device includes a gate stack disposed over a substrate. A first L-shaped spacer is disposed along a first sidewall of the gate stack and a second L-shaped spacer is disposed along a second sidewall of the gate stack. The first L-shaped spacer and the second L-shaped spacer include silicon and carbon. A first source/drain epitaxy region and a second source/drain epitaxy region are disposed over the substrate. The gate stack is disposed between the first source/drain epitaxy region and the second source/drain epitaxy region. An interlevel dielectric (ILD) layer disposed over the substrate. The ILD layer is disposed between the first source/drain epitaxy region and a portion of the first L-shaped spacer disposed along the first sidewall of the gate stack and between the second source/drain epitaxy region and a portion of the second L-shaped spacer disposed along the second sidewall of the gate stack.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Jen Pan, Yu-Hsien Lin, Hsiang-Ku Shen, Wei-Han Fan, Yun Jing Lin, Yimin Huang, Tzu-Chung Wang
  • Publication number: 20240096630
    Abstract: Disclosed is a semiconductor fabrication method. The method includes forming a gate stack in an area previously occupied by a dummy gate structure; forming a first metal cap layer over the gate stack; forming a first dielectric cap layer over the first metal cap layer; selectively removing a portion of the gate stack and the first metal cap layer while leaving a sidewall portion of the first metal cap layer that extends along a sidewall of the first dielectric cap layer; forming a second metal cap layer over the gate stack and the first metal cap layer wherein a sidewall portion of the second metal cap layer extends further along a sidewall of the first dielectric cap layer; forming a second dielectric cap layer over the second metal cap layer; and flattening a top layer of the first dielectric cap layer and the second dielectric cap layer using planarization operations.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wei Yin, Tzu-Wen Pan, Yu-Hsien Lin, Yu-Shih Wang, Jih-Sheng Yang, Shih-Chieh Chao, Yih-Ann Lin, Ryan Chia-Jen Chen
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20240072090
    Abstract: Various embodiments of the present disclosure are directed towards a stacked complementary metal-oxide semiconductor (CMOS) image sensor in which a pixel sensor spans multiple integrated circuit (IC) chips and is devoid of a shallow trench isolation (STI) structure at a photodetector of the pixel sensor. The photodetector and a first transistor form a first portion of the pixel sensor at a first IC chip. A plurality of second transistors forms a second portion of the pixel sensor at a second IC chip. By omitting the STI structure at the photodetector, a doped well surrounding and demarcating the pixel sensor may have a lesser width than it would otherwise have. Hence, the doped well may consume less area of the photodetector. This, in turn, allows enhanced scaling down of the pixel sensor.
    Type: Application
    Filed: January 5, 2023
    Publication date: February 29, 2024
    Inventors: Chi-Hsien Chung, Tzu-Jui Wang, Tzu-Hsuan Hsu, Chen-Jong Wang, Dun-Nian Yaung
  • Publication number: 20240072170
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor fin. The semiconductor device includes first spacers over the semiconductor fin. The semiconductor device includes a metal gate structure, over the semiconductor fin, that is sandwiched at least by the first spacers. The semiconductor device includes a gate electrode contacting the metal gate structure. An interface between the metal gate structure and the gate electrode has its side portions extending toward the semiconductor fin with a first distance and a central portion extending toward the semiconductor fin with a second distance, the first distance being substantially less than the second distance.
    Type: Application
    Filed: August 24, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wei Yin, Tzu-Wen Pan, Yu-Hsien Lin, Yu-Shih Wang, Yih-Ann Lin, Chia Ming Liang, Ryan Chia-Jen CHEN
  • Patent number: 8669316
    Abstract: Magnetic ion-exchange polymer microspheres and a method for preparing the same are provided. The method for preparing the magnetic ion-exchange polymer microspheres includes swelling the ion-exchange resins and allowing the magnetic nano-particles to enter the interior of the ion-exchange resins. The magnetic ion-exchange resins of the present invention have various functional groups can be introduced onto the surfaces thereof. Therefore, the magnetic ion-exchange resins of the present invention can be applied in many areas, and thereby they have high economic value.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: March 11, 2014
    Assignee: National Chung Cheng University
    Inventors: Wen-Chien Lee, Yu-Zong Lin, Yu-Sheng Lin, Tzu-Hsien Wang
  • Publication number: 20130149772
    Abstract: Magnetic ion-exchange polymer microspheres and a method for preparing the same are provided. The method for preparing the magnetic ion-exchange polymer microspheres includes swelling the ion-exchange resins and allowing the magnetic nano-particles to enter the interior of the ion-exchange resins. The magnetic ion-exchange resins of the present invention have various functional groups can be introduced onto the surfaces thereof. Therefore, the magnetic ion-exchange resins of the present invention can be applied in many areas, and thereby they have high economic value.
    Type: Application
    Filed: May 29, 2012
    Publication date: June 13, 2013
    Applicant: NATIONAL CHUNG CHENG UNIVERSITY
    Inventors: Wen-Chien Lee, Yu-Zong Lin, Yu-Sheng Lin, Tzu-Hsien Wang