Patents by Inventor Tzu-Kuo Huang

Tzu-Kuo Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11851087
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with trajectory prediction are provided. For example, trajectory data and goal path data can be accessed. The trajectory data can be associated with an object's predicted trajectory. The predicted trajectory can include waypoints associated with waypoint position uncertainty distributions that can be based on an expectation maximization technique. The goal path data can be associated with a goal path and include locations the object is predicted to travel. Solution waypoints for the object can be determined based on application of optimization techniques to the waypoints and waypoint position uncertainty distributions. The optimization techniques can include operations to maximize the probability of each of the solution waypoints. Stitched trajectory data can be generated based on the solution waypoints. The stitched trajectory data can be associated with portions of the solution waypoints and the goal path.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: December 26, 2023
    Assignee: UATC, LLC
    Inventors: Nemanja Djuric, Sai Bhargav Yalamanchi, Galen Clark Haynes, Tzu-Kuo Huang
  • Patent number: 11835951
    Abstract: Systems and methods for predicting object motion and controlling autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining state data indicative of at least a current or a past state of an object that is within a surrounding environment of an autonomous vehicle. The method includes obtaining data associated with a geographic area in which the object is located. The method includes generating a combined data set associated with the object based at least in part on a fusion of the state data and the data associated with the geographic area in which the object is located. The method includes obtaining data indicative of a machine-learned model. The method includes inputting the combined data set into the machine-learned model. The method includes receiving an output from the machine-learned model. The output can be indicative of a plurality of predicted trajectories of the object.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: December 5, 2023
    Assignee: UATC, LLC
    Inventors: Nemanja Djuric, Vladan Radosavljevic, Thi Duong Nguyen, Tsung-Han Lin, Jeff Schneider, Henggang Cui, Fang-Chieh Chou, Tzu-Kuo Huang
  • Publication number: 20220388537
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with trajectory prediction are provided. For example, trajectory data and goal path data can be accessed. The trajectory data can be associated with an object's predicted trajectory. The predicted trajectory can include waypoints associated with waypoint position uncertainty distributions that can be based on an expectation maximization technique. The goal path data can be associated with a goal path and include locations the object is predicted to travel. Solution waypoints for the object can be determined based on application of optimization techniques to the waypoints and waypoint position uncertainty distributions. The optimization techniques can include operations to maximize the probability of each of the solution waypoints. Stitched trajectory data can be generated based on the solution waypoints. The stitched trajectory data can be associated with portions of the solution waypoints and the goal path.
    Type: Application
    Filed: July 26, 2022
    Publication date: December 8, 2022
    Inventors: Nemanja Djuric, Sai Bhargav Yalamanchi, Galen Clark Haynes, Tzu-Kuo Huang
  • Patent number: 11420648
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with trajectory prediction are provided. For example, trajectory data and goal path data can be accessed. The trajectory data can be associated with an object's predicted trajectory. The predicted trajectory can include waypoints associated with waypoint position uncertainty distributions that can be based on an expectation maximization technique. The goal path data can be associated with a goal path and include locations the object is predicted to travel. Solution waypoints for the object can be determined based on application of optimization techniques to the waypoints and waypoint position uncertainty distributions. The optimization techniques can include operations to maximize the probability of each of the solution waypoints. Stitched trajectory data can be generated based on the solution waypoints. The stitched trajectory data can be associated with portions of the solution waypoints and the goal path.
    Type: Grant
    Filed: February 29, 2020
    Date of Patent: August 23, 2022
    Assignee: UATC, LLC
    Inventors: Nemanja Djuric, Sai Bhargav Yalamanchi, Galen Clark Haynes, Tzu-Kuo Huang
  • Publication number: 20210397185
    Abstract: Systems and methods for predicting object motion and controlling autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining state data indicative of at least a current or a past state of an object that is within a surrounding environment of an autonomous vehicle. The method includes obtaining data associated with a geographic area in which the object is located. The method includes generating a combined data set associated with the object based at least in part on a fusion of the state data and the data associated with the geographic area in which the object is located. The method includes obtaining data indicative of a machine-learned model. The method includes inputting the combined data set into the machine-learned model. The method includes receiving an output from the machine-learned model. The output can be indicative of a plurality of predicted trajectories of the object.
    Type: Application
    Filed: September 3, 2021
    Publication date: December 23, 2021
    Inventors: Nemanja Djuric, Vladan Radosavljevic, Thi Duong Nguyen, Tsung-Han Lin, Jeff Schneider, Henggang Cui, Fang-Chieh Chou, Tzu-Kuo Huang
  • Patent number: 11112796
    Abstract: Systems and methods for predicting object motion and controlling autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining state data indicative of at least a current or a past state of an object that is within a surrounding environment of an autonomous vehicle. The method includes obtaining data associated with a geographic area in which the object is located. The method includes generating a combined data set associated with the object based at least in part on a fusion of the state data and the data associated with the geographic area in which the object is located. The method includes obtaining data indicative of a machine-learned model. The method includes inputting the combined data set into the machine-learned model. The method includes receiving an output from the machine-learned model. The output can be indicative of a plurality of predicted trajectories of the object.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: September 7, 2021
    Assignee: UATC, LLC
    Inventors: Nemanja Djuric, Vladan Radosavljevic, Thi Duong Nguyen, Tsung-Han Lin, Jeff Schneider, Henggang Cui, Fang-Chieh Chou, Tzu-Kuo Huang
  • Publication number: 20210269059
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with trajectory prediction are provided. For example, trajectory data and goal path data can be accessed. The trajectory data can be associated with an object's predicted trajectory. The predicted trajectory can include waypoints associated with waypoint position uncertainty distributions that can be based on an expectation maximization technique. The goal path data can be associated with a goal path and include locations the object is predicted to travel. Solution waypoints for the object can be determined based on application of optimization techniques to the waypoints and waypoint position uncertainty distributions. The optimization techniques can include operations to maximize the probability of each of the solution waypoints. Stitched trajectory data can be generated based on the solution waypoints. The stitched trajectory data can be associated with portions of the solution waypoints and the goal path.
    Type: Application
    Filed: February 29, 2020
    Publication date: September 2, 2021
    Inventors: Nemanja Djuric, Sai Bhargav Yalamanchi, Galen Clark Haynes, Tzu-Kuo Huang
  • Patent number: 10579063
    Abstract: The present disclosure provides systems and methods for predicting the future locations of objects that are perceived by autonomous vehicles. An autonomous vehicle can include a prediction system that, for each object perceived by the autonomous vehicle, generates one or more potential goals, selects one or more of the potential goals, and develops one or more trajectories by which the object can achieve the one or more selected goals. The prediction systems and methods described herein can include or leverage one or more machine-learned models that assist in predicting the future locations of the objects. As an example, in some implementations, the prediction system can include a machine-learned static object classifier, a machine-learned goal scoring model, a machine-learned trajectory development model, a machine-learned ballistic quality classifier, and/or other machine-learned models. The use of machine-learned models can improve the speed, quality, and/or accuracy of the generated predictions.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: March 3, 2020
    Assignee: UATC, LLC
    Inventors: Galen Clark Haynes, Ian Dewancker, Nemanja Djuric, Tzu-Kuo Huang, Tian Lan, Tsung-Han Lin, Micol Marchetti-Bowick, Vladan Radosavljevic, Jeff Schneider, Alexander David Styler, Neil Traft, Huahua Wang, Anthony Joseph Stentz
  • Publication number: 20190049970
    Abstract: Systems and methods for predicting object motion and controlling autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining state data indicative of at least a current or a past state of an object that is within a surrounding environment of an autonomous vehicle. The method includes obtaining data associated with a geographic area in which the object is located. The method includes generating a combined data set associated with the object based at least in part on a fusion of the state data and the data associated with the geographic area in which the object is located. The method includes obtaining data indicative of a machine-learned model. The method includes inputting the combined data set into the machine-learned model. The method includes receiving an output from the machine-learned model. The output can be indicative of a plurality of predicted trajectories of the object.
    Type: Application
    Filed: September 5, 2018
    Publication date: February 14, 2019
    Inventors: Nemanja Djuric, Vladan Radosavljevic, Thi Duong Nguyen, Tsung-Han Lin, Jeff Schneider, Henggang Cui, Fang-Chieh Chou, Tzu-Kuo Huang
  • Publication number: 20190025841
    Abstract: The present disclosure provides systems and methods for predicting the future locations of objects that are perceived by autonomous vehicles. An autonomous vehicle can include a prediction system that, for each object perceived by the autonomous vehicle, generates one or more potential goals, selects one or more of the potential goals, and develops one or more trajectories by which the object can achieve the one or more selected goals. The prediction systems and methods described herein can include or leverage one or more machine-learned models that assist in predicting the future locations of the objects. As an example, in some implementations, the prediction system can include a machine-learned static object classifier, a machine-learned goal scoring model, a machine-learned trajectory development model, a machine-learned ballistic quality classifier, and/or other machine-learned models. The use of machine-learned models can improve the speed, quality, and/or accuracy of the generated predictions.
    Type: Application
    Filed: August 23, 2017
    Publication date: January 24, 2019
    Inventors: Clark Haynes, Ian Dewancker, Nemanja Djuric, Tzu-Kuo Huang, Tian Lan, Hank Lin, Micol Marchetti-Bowick, Vladan Radosavljevic, Jeff Schneider, Alex Styler, Neil Traft, Huahua Wang, Tony Stentz
  • Patent number: 7769561
    Abstract: A method for monitoring machine conditions is based on machine learning through the use of a statistical model. A correlation coefficient is calculated using weights assigned to each sample that indicate the likelihood that that sample is an outlier. The resulting correlation coefficient is more robust against outliers. The calculation of the weight is based on the Mahalanobis distance from the sample to the sample mean. Additionally, hierarchical clustering is applied to intuitively reveal group information among sensors. By specifying a similarity threshold, the user can easily obtain desired clustering results.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: August 3, 2010
    Assignee: Siemens Corporation
    Inventors: Chao Yuan, Christian Balderer, Tzu-Kuo Huang, Claus Neubauer
  • Publication number: 20070162241
    Abstract: A method for monitoring machine conditions is based on machine learning through the use of a statistical model. A correlation coefficient is calculated using weights assigned to each sample that indicate the likelihood that that sample is an outlier. The resulting correlation coefficient is more robust against outliers. The calculation of the weight is based on the Mahalanobis distance from the sample to the sample mean. Additionally, hierarchical clustering is applied to intuitively reveal group information among sensors. By specifying a similarity threshold, the user can easily obtain desired clustering results.
    Type: Application
    Filed: November 27, 2006
    Publication date: July 12, 2007
    Applicant: SIEMENS CORPORATE RESEARCH, INC.
    Inventors: Chao Yuan, Christian Balderer, Tzu-Kuo Huang, Claus Neubauer