Patents by Inventor Tzu-Wen Chu
Tzu-Wen Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20140071533Abstract: The invention relates to a transparent conductive film. The transparent conductive film has a plastic film substrate, whose two surfaces are provided in sequence with at least two undercoat layers and a patterned transparent conductive layer, respectively. The invention overcomes the drawback of image deterioration caused by the patterning of the transparent conductive layers and reduces the optical difference between the patterned regions and the non-patterned regions by adjusting the refractive indexes and thicknesses of the various layers.Type: ApplicationFiled: September 7, 2012Publication date: March 13, 2014Inventors: TING-CHING KUO, JYR-DWO LEE, SHIH-LIANG CHOU, CHIEN-MIN WENG, TZU-WEN CHU
-
Patent number: 8580353Abstract: A method for treating a surface of a glass substrate according to the invention has the steps of placing the glass substrate into a vacuum treatment chamber, introducing a gas into the vacuum treatment chamber, providing electric power to generate an ion source and using the ion source to treat the surface of the glass substrate. By this way, the invention can achieve an effect of surface cleaning and further render the conductive film to be coated on the glass substrate in the subsequent stage to have a reduced surface resistance, thereby improving the conductivity of the glass substrate. The film coated on the glass substrate in the subsequent stage will have higher crystalline level as well.Type: GrantFiled: July 8, 2010Date of Patent: November 12, 2013Assignee: Applied Vacuum Coating Technologies Co., Ltd.Inventors: Chien-Min Weng, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang
-
Publication number: 20120247953Abstract: The invention relates to a film coating system. The system includes serially arranged working zones including a rough vacuum feeding section, a high vacuum feeding section, an optical layer coating zone, a pretreatment zone, a transparent conductive layer coating zone and a pressure balanced exhausting zone. The system further includes a conveyor device for carrying a substrate which has been provided on its periphery with an ink frame layer and for delivering the substrate to the respective working zones, and a controlling device that controls the times for the substrate to be retained in the respective working zones based upon a time interval between the entry of two successive conveyor devices into the rough vacuum feeding section. The invention ensures a smooth operation of the production line, and the transparent conductive film coated thereby does not easily exfoliate and exhibits the advantageous properties of high optical performance and low surface resistance.Type: ApplicationFiled: March 28, 2011Publication date: October 4, 2012Inventors: CHIEN-MIN WENG, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang, Feng-Shiang Yao
-
Publication number: 20120213949Abstract: The invention relates to a method for producing a transparent indium tin oxide conductive layer on a substrate. The method involves using a target having a low indium-to-tin ratio in a low temperature manufacturing process (less than 200° C.), and introducing a plasma gas and a reaction gas into the reaction chamber to allow sputtering of an indium tin oxide layer on the substrate under a low oxygen environment, followed by subjecting the sputtered substrate to a heat treatment at 150˜200° C. for 60˜90 minutes. The indium tin oxide layer thus produced will crystallize completely and have the advantageous properties of low surface resistance and high uniformity.Type: ApplicationFiled: February 18, 2011Publication date: August 23, 2012Inventors: CHIEN-MIN WENG, SHIH-LIANG CHOU, TZU-WEN CHU, FU-JEN WANG, FENG-SHIANG YAO
-
Patent number: 8245535Abstract: A method of strengthening glass plate is provided. A plasma treating process is performed on a glass plate so that a surface pore variation of the glass plate after the plasma treating process is reduced relative to the surface pore variation of the glass plate before the plasma treating process, wherein the surface pore variation is a variation degree of surface pores in different unit areas of the glass plate. In the mean time, a melted network crosslinking structure is formed on the surface of the glass plate. Based on the above-mentioned mechanisms, the glass plate is strengthened. The plasma treating process is conducive to strengthen the glass plate whether the plasma treating process is performed before or after the conventional chemical strengthening process.Type: GrantFiled: October 8, 2009Date of Patent: August 21, 2012Assignees: Applied Vacuum Coating Technologies Co., Ltd., Avct Optical Electronic Co., Ltd.Inventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, Fu-Jen Wang, Shih-Liang Chou, I-Wen Lee, Ching-Hsiu Cheng
-
Publication number: 20120009354Abstract: A method for treating a surface of a glass substrate according to the invention has the steps of placing the glass substrate into a vacuum treatment chamber, introducing a gas into the vacuum treatment chamber, providing electric power to generate an ion source and using the ion source to treat the surface of the glass substrate. By this way, the invention can achieve an effect of surface cleaning and further render the conductive film to be coated on the glass substrate in the subsequent stage to have a reduced surface resistance, thereby improving the conductivity of the glass substrate. The film coated on the glass substrate in the subsequent stage will have higher crystalline level as well.Type: ApplicationFiled: July 8, 2010Publication date: January 12, 2012Inventors: CHIEN-MIN WENG, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang
-
Publication number: 20110234507Abstract: The present invention provides an integrated touch panel comprising a transparent substrate, one of an icon or artwork layer, a first layer of optical film, and a first sensing layer. The icon layer or artwork layer is coated on the periphery of one side face of the transparent substrate, and the inner periphery of the icon layer or artwork layer is not perpendicular to the adjacent line of the transparent substrate. The first layer of optical film is stacked on icon layer or artwork layer and the areas on the transparent substrate uncovered with icon layer. The first sensing layer is stacked on the first layer of optical film by sputtering. The interchangeability is included in the patent claim of the present invention. As icon layer or artwork layer is not perpendicular to the transparent substrate, the subsequent cladding of the structures may be completed by sputtering or other methods.Type: ApplicationFiled: July 30, 2010Publication date: September 29, 2011Applicants: APPLIED VACUUM COATING TECHNOLOGIES CO., LTD., AVCT OPTICAL ELECTRONIC CO., LTD.Inventors: SHIH-LIANG CHOU, HSUEH-CHIH CHIANG, CHIEN-MIN WENG, TZU-WEN CHU, FU-JEN WANG, I-WEN LEE, HSING-YEH CHEN
-
Publication number: 20110056244Abstract: A method of strengthening glass plate is provided. A plasma treating process is performed on a glass plate so that a surface pore variation of the glass plate after the plasma treating process is reduced relative to the surface pore variation of the glass plate before the plasma treating process, wherein the surface pore variation is a variation degree of surface pores in different unit areas of the glass plate. In the mean time, a melted network crosslinking structure is formed on the surface of the glass plate. Based on the above-mentioned mechanisms, the glass plate is strengthened. The plasma treating process is conducive to strengthen the glass plate whether the plasma treating process is performed before or after the conventional chemical strengthening process.Type: ApplicationFiled: October 8, 2009Publication date: March 10, 2011Applicants: APPLIED VACUUM COATING TECHNOLOGIES CO., LTD., AVCT OPTICAL ELECTRONIC CO., LTDInventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, Fu-Jen Wang, Shih-Liang Chou, I-Wen Lee, Ching-Hsiu Cheng
-
Publication number: 20100101937Abstract: A method of fabricating transparent conductive film including the following steps is provided. First, a reactive chamber having at least a target and at least a heating device is provided. Subsequentially, a plasma is generated in the reactive chamber, wherein the plasma is located above the target. Next, the plasma is heated by the heating device from a standby temperature to a working temperature. Simultaneously, a hard plastic substrate is passed above the plasma at a specific speed, wherein the particles of the target are bombarded by the plasma so as to form transparent conductive film on the hard plastic substrate.Type: ApplicationFiled: October 29, 2008Publication date: April 29, 2010Applicant: Applied Vacuum Coating Technologies Co., Ltd.Inventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, I-Wen Lee, Shih-Liang Chou
-
Publication number: 20070119702Abstract: A method for sputtering a multilayer film on a sheet workpiece at a low temperature of the present invention has the following steps: employing plasma to clean a surface of a sheet workpiece, sputtering at least one metal oxide or semiconductor oxide on the sheet workpiece, and sputtering at least one ITO transparent electric layer on the sheet workpiece. The film sputtering process of the sheet workpiece employs continuously connecting work stations, thereby controlling delay time between the work stations of the sheet workpiece within a given range. The sheet workpiece is made from a macromolecular material.Type: ApplicationFiled: November 30, 2005Publication date: May 31, 2007Inventors: Jau-Jier Chu, Hsu-Fu Hung, I-Wen Lee, Chien-Min Weng, Tzu-Wen Chu
-
Publication number: 20070119704Abstract: A method for sputtering a multilayer film on a sheet workpiece at a low temperature of the present invention has the following steps: employing plasma to modify a surface of a sheet workpiece, providing a reciprocating sputtering process to deposit metal oxide layers or semiconductor oxide layers on the sheet workpiece, preheating the sheet workpiece and providing a reciprocating ITO sputtering process to sputter ITO transparent conductive layers on the sheet workpiece. The film sputtering process of the sheet workpiece employs continuously connecting work line and controls delay time between the sputtering units to deposit a film with a predetermined thickness on the sheet workpiece.Type: ApplicationFiled: January 29, 2007Publication date: May 31, 2007Inventors: Jau-Jier Chu, Hsu-Fu Hung, I-Wen Lee, Chien-Min Weng, Tzu-Wen Chu