Patents by Inventor Tzvetan Ivanov

Tzvetan Ivanov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906546
    Abstract: Active cantilever probes having a thin coating incorporated into their design are disclosed. The probes can be operated in opaque and/or chemically harsh environments without the need of a light source or optical system and without being significantly negatively impacted by corrosion. The probes include a substrate that has a cantilever, a thermomechanical actuator associated with the cantilever, a piezoresistive stress sensor disposed on the cantilever, and a thin coating disposed on the cantilever and the piezoresistive stress sensor. The coating is bonded to the substrate, is thermally conductive, and has a low thermal resistance. Further, the thin coating is configured to have little to no impact on one or more of a mass of the active probe, a residual stress of the cantilever, or a stiffness of the active probe. Techniques for performing topography and making other measurements in an opaque and/or chemically harsh environment are also provided.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: February 20, 2024
    Assignees: Massachusetts Institute of Technology, Nano Analytik GMBH, Synsfuels Americas Corporation
    Inventors: Fangzhou Xia, Chen Yang, Yi Wang, Kamal Youcef-Toumi, Christoph Reuter, Tzvetan Ivanov, Mathias Holz, Ivo Rangelow
  • Publication number: 20220244288
    Abstract: Active cantilever probes having a thin coating incorporated into their design are disclosed. The probes can be operated in opaque and/or chemically harsh environments without the need of a light source or optical system and without being significantly negatively impacted by corrosion. The probes include a substrate that has a cantilever, a thermomechanical actuator associated with the cantilever, a piezoresistive stress sensor disposed on the cantilever, and a thin coating disposed on the cantilever and the piezoresistive stress sensor. The coating is bonded to the substrate, is thermally conductive, and has a low thermal resistance. Further, the thin coating is configured to have little to no impact on one or more of a mass of the active probe, a residual stress of the cantilever, or a stiffness of the active probe. Techniques for performing topography and making other measurements in an opaque and/or chemically harsh environment are also provided.
    Type: Application
    Filed: July 6, 2020
    Publication date: August 4, 2022
    Inventors: Fangzhou XIA, Chen YANG, Yi WANG, Kamal YOUCEF-TOUMI, Christoph REUTER, Tzvetan IVANOV, Mathias HOLZ, W. Ivo RANGELOW
  • Patent number: 8689359
    Abstract: The present invention relates to an apparatus and a method for investigating surface properties of different materials, which make it possible to carry out atomic force microscopy with a simplified and faster shear force method. The apparatus according to the invention is characterized by perpendicular orientation of the measuring tip of a self-actuated cantilever with respect to the surface of the sample. A piezoresistive sensor and a bimorph actuator are preferably DC-isolated. The measuring tip is in the form of a carbon nanotube, in particular. A plurality of cantilevers can be arranged in the form of a cantilever array which is characterized by a comb-like arrangement of individual pre-bent cantilevers. The method according to the invention is distinguished by a fast feedback signal on account of the distance between the measuring tip and the surface to be investigated being regulated using the change in a DC signal which supplies the actuator.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: April 1, 2014
    Assignee: Nano Analytik GmbH
    Inventors: Ivo W. Rangelow, Tzvetan Ivanov, Burkhard Volland, Teodor Gotszalk, Miroslaw Woszczyna, Jerzy Mielczarski, Yanko Sarov
  • Patent number: 8312561
    Abstract: The invention relates to a device and a method for the micromechanical positioning and handling of an object. The aim of the invention is to provide a device and an associated method for the micromechanical positioning and handling of objects by means of which the scanning speed can be increased and the positional accuracy be improved so that real time images or video rate images (ca. 25 images per second) having a lateral and vertical resolution in the nanometer range can be achieved. According to the invention, a monolithic component, preferably made of silicon, comprises a support element, an object carrier, a plurality of guide elements and elements for transmitting the movement, the preferably piezoresistive drive elements and the preferably piezoresistive position detectors being integrated into said monolithic component; Said micromechanical positioning device can be used, for example, in scanning probe microscopy and in nanopositioning and nanomanipulation technology.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: November 13, 2012
    Assignee: Technische Universitaet Ilmenau
    Inventors: Ivo W. Rangelow, Stefan Klett, Eishad Guliyev, Tzvetan Ivanov, Burkhard Volland
  • Patent number: 8128282
    Abstract: A microsystem component with a device (3) deformable under the influence of temperature changes is disclosed. The device comprises at least one first (4, 5) and second (8) element with differing thermal expansion coefficients and different thermal conductivities. The elements (4, 5; 8) are physically separate and arranged and connected to each other such that the device (3) assumes flexure states which are dependent on the temperature.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: March 6, 2012
    Assignee: Universitaet Kassel
    Inventors: Ivo Rangelow, Tzvetan Ivanov, Katerina Ivanova
  • Publication number: 20110047662
    Abstract: The present invention relates to an apparatus and a method for investigating surface properties of different materials, which make it possible to carry out atomic force microscopy with a simplified and faster shear force method. The apparatus according to the invention is characterized by perpendicular orientation of the measuring tip of a self-actuated cantilever with respect to the surface of the sample. A piezoresistive sensor and a bimorph actuator are preferably DC-isolated. The measuring tip is in the form of a carbon nanotube, in particular. A plurality of cantilevers can be arranged in the form of a cantilever array which is characterized by a comb-like arrangement of individual pre-bent cantilevers. The method according to the invention is distinguished by a fast feedback signal on account of the distance between the measuring tip and the surface to be investigated being regulated using the change in a DC signal which supplies the actuator.
    Type: Application
    Filed: June 26, 2008
    Publication date: February 24, 2011
    Inventors: Ivo W. Rangelow, Tzvetan Ivanov, Burkhard Volland, Teodor Gotszalk, Miroslaw Woszczyna
  • Publication number: 20100017921
    Abstract: The invention relates to a device and a method for the micromechanical positioning and handling of an object. The aim of the invention is to provide a device and an associated method for the micromechanical positioning and handling of objects by means of which the scanning speed can be increased and the positional accuracy be improved so that real time images or video rate images (ca. 25 images per second) having a lateral and vertical resolution in the nanometer range can be achieved. According to the invention, a monolithic component, preferably made of silicon, comprises a support element, an object carrier, a plurality of guide elements and elements for transmitting the movement, the preferably piezoresistive drive elements and the preferably piezoresistive position detectors being integrated into said monolithic component; Said micromechanical positioning device can be used, for example, in scanning probe microscopy and in nanopositioning and nanomanipulation technology.
    Type: Application
    Filed: January 28, 2008
    Publication date: January 21, 2010
    Applicant: TECHNISCHE UNIVERSITAET ILMENAU
    Inventors: Ivo W. Rangelow, Stefan Klett, Eishad Guliyev, Tzvetan Ivanov, Burkhard Volland
  • Publication number: 20090213900
    Abstract: A microsystem component with a device (3) deformable under the influence of temperature changes is disclosed. The device comprises at least one first (4, 5) and second (8) element with differing thermal expansion coefficients and different thermal conductivities. The elements (4, 5; 8) are physically separate and arranged and connected to each other such that the device (3) assumes flexure states which are dependent on the temperature.
    Type: Application
    Filed: January 4, 2006
    Publication date: August 27, 2009
    Inventors: Ivo Rangelow, Tzvetan Ivanov, Katerina Ivanova