Patents by Inventor Ujjal K. Mukherjee

Ujjal K. Mukherjee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10815437
    Abstract: Processes and systems for converting high sulfur fuel oils to petrochemicals including hydrocracking the high sulfur fuel oil in a fuel oil hydrocracker to form a cracked fuel oil effluent, which may be separated into a light fraction and a heavy fraction. The heavy fraction may be gasified to produce a syngas, and the syngas or hydrogen recovered from the syngas may be fed to the fuel oil hydrocracker. The light fraction may be hydrocracked in a distillate hydrocracker to form a cracked effluent, which may be separated into a hydrogen fraction, a light hydrocarbon fraction, a light naphtha fraction, and a heavy naphtha fraction. The heavy naphtha fraction may be reformed to produce hydrogen and at least one of benzene, toluene, and xylenes. The light hydrocarbon fraction and/or the light naphtha fraction may be steam cracked to produce at least one of ethylene, propylene, benzene, toluene, and xylenes.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: October 27, 2020
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventor: Ujjal K. Mukherjee
  • Publication number: 20200318021
    Abstract: Processes herein may be used to thermally crack various hydrocarbon feeds, and may eliminate the refinery altogether while making the crude to chemicals process very flexible in terms of crude. In embodiments herein, crude is progressively separated into light and heavy fractions utilizing convection heat from heaters used in steam cracking. Depending on the quality of the light and heavy fractions, these are routed to one of three upgrading operations, including a fixed bed hydroconversion unit, a fluidized catalytic conversion unit, or a residue hydrocracking unit that may utilize either an ebullated bed reactor with extrudate catalysts or a slurry hydrocracking reactor using a homogeneous catalyst system, such as a molybdenum based catalysts which may optionally be promoted with nickel. Products from the upgrading operations can be finished olefins and/or aromatics, or, for heavier products from the upgrading operations, may be used as feed to the steam cracker.
    Type: Application
    Filed: March 16, 2020
    Publication date: October 8, 2020
    Applicant: LUMMUS TECHNOLOGY LLC
    Inventors: Ujjal K. Mukherjee, Kandasamy Sundaram
  • Patent number: 10793793
    Abstract: Integrated pyrolysis and hydrocracking systems and processes for efficiently cracking of hydrocarbon mixtures, such as mixtures including compounds having a normal boiling temperature of greater than 450° C., 500° C., or even greater than 550° C., such as whole crudes for example, are disclosed.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: October 6, 2020
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Kandasamy Meenakshi Sundaram, Stephen J. Stanley, Ronald M. Venner, Ujjal K. Mukherjee
  • Patent number: 10731091
    Abstract: Processes and systems for upgrading resid hydrocarbon feeds are disclosed. The process system may operate in two different operating modes, maximum conversion and maximum quality effluent. The process system may be reversibly transitioned between the different operating modes. The system has the ability to reversibly transition between the two modes without shutting down the system or losing production.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 4, 2020
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Ujjal K. Mukherjee, Marvin I. Greene, Mario C. Baldassari
  • Patent number: 10385283
    Abstract: Embodiments herein relate to a process flow scheme for the processing of gas oils and especially reactive gas oils produced by thermal cracking of residua using a split flow concept. The split flow concepts disclosed allow optimization of the hydrocracking reactor severities and thereby take advantage of the different reactivities of thermally cracked gas oils versus those of virgin gas oils. This results in a lower cost facility for producing base oils as well as diesel, kerosene and gasoline fuels while achieving high conversions and high catalyst lives.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: August 20, 2019
    Assignee: Lummus Technology Inc.
    Inventors: Arun Arora, Ujjal K. Mukherjee, Wai Seung Louie, Marvin I. Greene
  • Patent number: 10370603
    Abstract: Processes for upgrading partially converted vacuum residua hydrocarbon feeds are disclosed. The upgrading processes may include: steam stripping the partially converted vacuum residua to generate a first distillate and a first residuum; solvent deasphalting the first residuum stream to generate a deasphalted oil and an asphaltenes fraction; vacuum fractionating the deasphalted oil to recover a deasphalted gas oil distillate and a heavy deasphalted residuum; contacting the first distillate and the deasphalted gas oil distillate and hydrogen in the presence of a first hydroconversion catalyst to produce a product; contacting the heavy deasphalted residuum stream and hydrogen in the presence of a second hydroconversion catalyst to produce an effluent; and fractionating the effluent to recover a hydrocracked atmospheric residua and a hydrocracked atmospheric distillate.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: August 6, 2019
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Ujjal K. Mukherjee, Mario C. Baldassari, Marvin I. Greene
  • Patent number: 10344225
    Abstract: Processes for upgrading partially converted vacuum residua hydrocarbon feeds are disclosed. The upgrading processes may include: steam stripping the partially converted vacuum residua to generate a first distillate and a first residuum; solvent deasphalting the first residuum stream to generate a deasphalted oil and an asphaltenes fraction; vacuum fractionating the deasphalted oil to recover a deasphalted gas oil distillate and a heavy deasphalted residuum; contacting the first distillate and the deasphalted gas oil distillate and hydrogen in the presence of a first hydroconversion catalyst to produce a product; contacting the heavy deasphalted residuum stream and hydrogen in the presence of a second hydroconversion catalyst to produce an effluent; and fractionating the effluent to recover a hydrocracked atmospheric residua and a hydrocracked atmospheric distillate.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: July 9, 2019
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Ujjal K. Mukherjee, Mario C. Baldassari, Marvin I. Greene
  • Publication number: 20190203130
    Abstract: Processes and systems for converting high sulfur fuel oils to petrochemicals including hydrocracking the high sulfur fuel oil in a fuel oil hydrocracker to form a cracked fuel oil effluent, which may be separated into a light fraction and a heavy fraction. The heavy fraction may be gasified to produce a syngas, and the syngas or hydrogen recovered from the syngas may be fed to the fuel oil hydrocracker. The light fraction may be hydrocracked in a distillate hydrocracker to form a cracked effluent, which may be separated into a hydrogen fraction, a light hydrocarbon fraction, a light naphtha fraction, and a heavy naphtha fraction. The heavy naphtha fraction may be reformed to produce hydrogen and at least one of benzene, toluene, and xylenes. The light hydrocarbon fraction and/or the light naphtha fraction may be steam cracked to produce at least one of ethylene, propylene, benzene, toluene, and xylenes.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 4, 2019
    Applicant: LUMMUS TECHNOLOGY LLC
    Inventor: Ujjal K. Mukherjee
  • Patent number: 10221366
    Abstract: A process for upgrading residuum hydrocarbons and decreasing tendency of the resulting products toward asphaltenic sediment formation in downstream processes is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a hydroconversion catalyst in a hydrocracking reaction zone to convert at least a portion of the residuum hydrocarbon fraction to lighter hydrocarbons; recovering an effluent from the hydrocracking reaction zone; contacting hydrogen and at least a portion of the effluent with a resid hydrotreating catalyst; and separating the effluent to recover two or more hydrocarbon fractions.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: March 5, 2019
    Assignee: Lummus Technology Inc.
    Inventors: Ujjal K. Mukherjee, Mario C. Baldassari
  • Publication number: 20190023999
    Abstract: Integrated pyrolysis and hydrocracking systems and processes for efficiently cracking of hydrocarbon mixtures, such as mixtures including compounds having a normal boiling temperature of greater than 450° C., 500° C., or even greater than 550° C., such as whole crudes for example, are disclosed.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 24, 2019
    Applicant: LUMMUS TECHNOLOGY LLC
    Inventors: Kandasamy Meenakshi Sundaram, Stephen J. Stanley, Ronald M. Venner, Ujjal K. Mukherjee
  • Patent number: 10144881
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-hydrogen mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides and recovering a reaction effluent comprising water and one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics; hydrotreating the reaction effluent to form a hydrotreated effluent.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: December 4, 2018
    Assignees: Chevron Lummus Global, LLC, Applied Research Associates, Inc.
    Inventors: Ujjal K. Mukherjee, Arun Arora, Marvin I. Greene, Edward Coppola, Charles Red, Jr., J. Steven Baxley, Sanjay Nana, Jeffrey Rine
  • Patent number: 10144880
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-diatomic hydrogen mixture at a temperature in the range from about 250° C. to about 560° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides and recovering a reaction effluent comprising water and one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics; and hydrotreating the reaction effluent to form a hydrotreated effluent.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: December 4, 2018
    Assignees: Chevron Lummus Global, LLC, Applied Research Associates, Inc.
    Inventors: Marvin I. Greene, Ujjal K. Mukherjee, Arun Arora, Edward Coppola, Charles Red, Jr., J. Steven Baxley, Sanjay Nana, Jeffrey Rine
  • Patent number: 10087374
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-hydrogen mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides and recovering a reaction effluent comprising water and one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics; hydrotreating the reaction effluent to form a hydrotreated effluent.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: October 2, 2018
    Assignees: Chevron Lummus Global, LLC, Applied Research Associates, Inc.
    Inventors: Ujjal K. Mukherjee, Arun Arora, Marvin I. Greene, Edward Coppola, Charles Red, Jr., J. Steven Baxley, Sanjay Nana, Jeffrey Rine
  • Publication number: 20180179457
    Abstract: Processes and systems for upgrading resid hydrocarbon feeds are disclosed. The process system may operate in two different operating modes, maximum conversion and maximum quality effluent. The process system may be reversibly transitioned between the different operating modes. The system has the ability to reversibly transition between the two modes without shutting down the system or losing production.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 28, 2018
    Applicant: Lummus Technology Inc.
    Inventors: Ujjal K. Mukherjee, Marvin I. Greene, Mario C. Baldassari
  • Publication number: 20180119027
    Abstract: A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 3, 2018
    Applicant: Lummus Technology Inc.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
  • Patent number: 9873839
    Abstract: Processes for upgrading resid hydrocarbon feeds are disclosed. The upgrading processes may include: hydrocracking a resid in a first reaction stage to form a first stage effluent; hydrocracking a deasphalted oil fraction in a second reaction stage to form a second stage effluent; fractionating the first stage effluent and the second stage effluent to recover at least one distillate hydrocarbon fraction and a resid hydrocarbon fraction; feeding the resid hydrocarbon fraction to a solvent deasphalting unit to provide an asphaltene fraction and the deasphalted oil fraction.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: January 23, 2018
    Assignee: Lummus Technology Inc.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Avinash Gupta
  • Publication number: 20170335206
    Abstract: Processes for upgrading partially converted vacuum residua hydrocarbon feeds are disclosed. The upgrading processes may include: steam stripping the partially converted vacuum residua to generate a first distillate and a first residuum; solvent deasphalting the first residuum stream to generate a deasphalted oil and an asphaltenes fraction; vacuum fractionating the deasphalted oil to recover a deasphalted gas oil distillate and a heavy deasphalted residuum; contacting the first distillate and the deasphalted gas oil distillate and hydrogen in the presence of a first hydroconversion catalyst to produce a product; contacting the heavy deasphalted residuum stream and hydrogen in the presence of a second hydroconversion catalyst to produce an effluent; and fractionating the effluent to recover a hydrocracked atmospheric residua and a hydrocracked atmospheric distillate.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Applicant: Lummus Technology Inc.
    Inventors: Ujjal K. Mukherjee, Mario C. Baldassari, Marvin I. Greene
  • Patent number: 9725661
    Abstract: Integrated processes for upgrading crude shale-derived oils, such as those produced by oil shale retorting or by in situ extraction or combinations thereof. Processes disclosed provide for a split-flow processing scheme to upgrade whole shale oil. The split flow concepts described herein, i.e., naphtha and kerosene hydrotreating in one or more stages and gas oil hydrotreating in one or more stages, requires additional equipment as compared to the alternative approach of whole oil hydrotreating. While contrary to conventional wisdom as requiring more capital equipment to achieve the same final product specifications, the operating efficiency vis a vis on-stream time efficiency and product quality resulting from the split flow concept far exceed in value the somewhat incrementally higher capital expenditure costs.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: August 8, 2017
    Assignee: Lummus Technology Inc.
    Inventors: Marvin I. Greene, Ujjal K. Mukherjee, Arun Arora
  • Patent number: 9695369
    Abstract: Processes for upgrading partially converted vacuum residua hydrocarbon feeds are disclosed.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: July 4, 2017
    Assignee: Lummus Technology Inc.
    Inventors: Ujjal K. Mukherjee, Mario C. Baldassari, Marvin I. Greene
  • Publication number: 20170183573
    Abstract: Embodiments herein relate to a process flow scheme for the processing of gas oils and especially reactive gas oils produced by thermal cracking of residua using a split flow concept. The split flow concepts disclosed allow optimization of the hydrocracking reactor severities and thereby take advantage of the different reactivities of thermally cracked gas oils versus those of virgin gas oils. This results in a lower cost facility for producing base oils as well as diesel, kerosene and gasoline fuels while achieving high conversions and high catalyst lives.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicant: Lummus Technology Inc.
    Inventors: Arun Arora, Ujjal K. Mukherjee, Wai Seung Louie, Marvin I. Greene