Patents by Inventor Ulf Fritz

Ulf Fritz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240100308
    Abstract: PTA catheters and improved PTA methods address problems associated with PTA procedures. One or more stabilizers are activated to hold or fix the PTA catheter at a desired relative position within a support catheter. Timely activation of the stabilizers can prevent deformation of the PTA apparatus during manipulation of the PTA apparatus within biological vessels.
    Type: Application
    Filed: January 28, 2022
    Publication date: March 28, 2024
    Inventors: Marc Gianotti, Dragana Margeta, Johannes Kulicke, Michael Jetter, Ulf Fritz
  • Patent number: 11938286
    Abstract: The current document is directed to usable-length-selectable catheters that employ usable-length-selectable catheters to treat malformations, constrictions, obstructions, lesions, and blockages within patients' blood vessels. The usable length of the shaft of a usable-length-selectable catheter, to which the current application is directed, can be adjusted over a set of lengths prior to and during medical procedures.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: March 26, 2024
    Assignee: CTI VASCULAR AG
    Inventors: Marc Gianotti, Ulf Fritz
  • Publication number: 20230270680
    Abstract: The present disclosure is related to inorganic, biocompatible material compositions for bioactivatable devices, devices, and products comprising transition metal chalcogenides, such as molybdenum sulfides, that can be converted in vivo from a non-bioactive state to a bioactive state upon exposure to physiological conditions, wherein the bioactivated transition metal chalcogenide derivatives, such as molybdenum sulfide derivatives, exhibit copper-chelating activities. Various methods for the application of these compositions for enhancing biocompatibility and reducing or modulating copper-dependent biological reactions are provided.
    Type: Application
    Filed: September 30, 2021
    Publication date: August 31, 2023
    Applicant: CTI Vascular AG
    Inventors: Ulf FRITZ, Marc GIANOTTI
  • Publication number: 20220362161
    Abstract: Polymeric particles are provided for use in therapeutic and/or diagnostic procedures. The particles include poly[bis(trifluoroethoxy)phosphazene and/or a derivative thereof which may be present throughout the particles or within an outer coating of the particles. The particles may also include a core having a hydrogel formed from an acrylic-based polymer. Such particles may be provided to a user in specific selected sizes to allow for selective embolization of certain sized blood vessels or localized treatment with an active component agent in specific clinical uses. Particles of the present invention may further be provided as color-coded microspheres or nanospheres to allow ready identification of the sized particles in use. Such color-coded microspheres or nanospheres may further be provided in like color-coded delivery or containment devices to enhance user identification and provide visual confirmation of the use of a specifically desired size of microspheres or nanospheres.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 17, 2022
    Inventors: Ulf FRITZ, Olaf FRITZ, Thomas A. GORDY, Ronald WOJCIK, Jaques BLÜMMEL, Alexander KÜLLER
  • Patent number: 11426355
    Abstract: Polymeric particles are provided for use in therapeutic and/or diagnostic procedures. The particles include poly[bis(trifluoroethoxy)phosphazene and/or a derivative thereof which may be present throughout the particles or within an outer coating of the particles. The particles may also include a core having a hydrogel formed from an acrylic-based polymer. Such particles may be provided to a user in specific selected sizes to allow for selective embolization of certain sized blood vessels or localized treatment with an active component agent in specific clinical uses. Particles of the present invention may further be provided as color-coded microspheres or nanospheres to allow ready identification of the sized particles in use. Such color-coded microspheres or nanospheres may further be provided in like color-coded delivery or containment devices to enhance user identification and provide visual confirmation of the use of a specifically desired size of microspheres or nanospheres.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: August 30, 2022
    Assignee: Varian Medical Systems, Inc.
    Inventors: Ulf Fritz, Olaf Fritz, Thomas A. Gordy, Ronald Wojcik, Jaques Blummel, Alexander Kuller
  • Publication number: 20210308432
    Abstract: The current document is directed to length-adjustable catheters and methods that employ length-adjustable catheters to treat malformations, constrictions, obstructions, lesions, and blockages within patients' blood vessels. The length of the shaft of a length-adjustable catheter, to which the current application is directed, can be adjusted over a range of lengths prior to and during medical procedures. In many implementations, length adjustment is accompanied by indications, to the medical provider, of the extent of a length adjustment. The indications may include one or more of visual markings, haptic feedback, radio-opaque markings, and/or other types of indications. In many implementations, the variable-length mechanism of the length-adjustable catheter is mechanically lockable following length adjustment.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 7, 2021
    Applicant: CTI Vascular AG
    Inventors: Marc Gianotti, Michael Jetter, Martin Rickert, Dragana Gajic, Sabina Silva, Andreas Bodmer, Valentin Nickel, Ulf Fritz
  • Publication number: 20210299056
    Abstract: Various embodiments are directed to color-coded and size-calibrated polymeric particles comprising an acrylate-based hydrogel core incorporating one or more chromophores of interest, and an outer shell comprising polyphosphazenes of formula I, useful for various therapeutic and/or diagnostic procedures. In various embodiments, the color-coded and size-calibrated polymeric particles can be employed in any particle-mediated procedure, including as embolic agents, dermal fillers, and various implantable devices for a broad range of clinical and cosmetic applications. The incorporation of a particular chromophore formulation that correlates with a pre-determined size specificity for implantable and loadable polymeric particles (“color-coded and size-calibrated”) enables the visual detection and identification of particles exhibiting a particular size of interest, and minimizes the probability of user-introduced or procedural errors.
    Type: Application
    Filed: May 15, 2009
    Publication date: September 30, 2021
    Applicant: Varian Medical Systems, Inc.
    Inventors: Ulf Fritz, Olaf Fritz, Thomas A. Gordy, Ronald Wojcik, Jacques BLÜMMEL, Alexander KÜLLER
  • Publication number: 20210290555
    Abstract: Particles are provided for use in therapeutic and/or diagnostic procedures. The particles include poly[bis(trifluoroethoxy) phosphazene] and/or a derivatives thereof which may be present throughout the particles or within an outer coating of the particles. The particles can also include a core having a hydrogel formed from an acrylic-based polymer. Barium sulfate may also be provided to the core of the particles as a coating or absorbed within the core of the particles. The particles can be used to minimize blood flow to mammalian tissues by occluding at least a portion of a blood vessel of the mammal, or to deliver an active agent to a localized area within a body of a mammal by contacting a localized area with at least one of the particles. Further, the particles are useful in sustained release formulations including active agent(s) for oral administration, as tracer particles for injection into the bloodstream of a mammal or for use in enhanced ultrasound imaging.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 23, 2021
    Inventors: Philipp Harder, Olaf Fritz, Ulf Fritz
  • Patent number: 11052050
    Abstract: Particles are provided for use in therapeutic and/or diagnostic procedures. The particles include poly[bis(trifluoroethoxy) phosphazene] and/or a derivatives thereof which may be present throughout the particles or within an outer coating of the particles. The particles can also include a core having a hydrogel formed from an acrylic-based polymer. Barium sulfate may also be provided to the core of the particles as a coating or absorbed within the core of the particles. The particles can be used to minimize blood flow to mammalian tissues by occluding at least a portion of a blood vessel of the mammal, or to deliver an active agent to a localized area within a body of a mammal by contacting a localized area with at least one of the particles. Farther, the particles are useful in sustained release formulations including active agent(s) for oral administration, as tracer particles for injection into the bloodstream of a mammal or for use in enhanced ultrasound imaging.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: July 6, 2021
    Assignee: Varian Medical Systems, Inc.
    Inventors: Philipp Harder, Olaf Fritz, Ulf Fritz
  • Patent number: 10973770
    Abstract: Polymeric particles are provided for use in therapeutic and/or diagnostic procedures. The particles include poly[bis(trifluoroethoxy)phosphazene and/or a derivative thereof which may be present throughout the particles or within an outer coating of the particles. The particles may also include a core having a hydrogel formed from an acrylic-based polymer. Such particles may be provided to a user in specific selected sizes to allow for selective embolization of certain sized blood vessels or localized treatment with an active component agent in specific clinical uses. Particles of the present invention may further be provided as color-coded microspheres or nanospheres to allow ready identification of the sized particles in use. Such color-coded microspheres or nanospheres may further be provided in like color-coded delivery or containment devices to enhance user identification and provide visual confirmation of the use of a specifically desired size of microspheres or nanospheres.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: April 13, 2021
    Assignee: Varian Medical Systems, Inc.
    Inventors: Ulf Fritz, Olaf Fritz, Thomas A. Gordy, Ronald Wojcik, Jacques Blummel, Alexander Kuller
  • Publication number: 20210077789
    Abstract: The current document is directed to usable-length-selectable catheters that employ usable-length-selectable catheters to treat malformations, constrictions, obstructions, lesions, and blockages within patients' blood vessels. The usable length of the shaft of a usable-length-selectable catheter, to which the current application is directed, can be adjusted over a set of lengths prior to and during medical procedures.
    Type: Application
    Filed: June 26, 2018
    Publication date: March 18, 2021
    Applicant: CTI Vascular AG
    Inventors: Marc GIANOTTI, Ulf FRITZ
  • Publication number: 20210023015
    Abstract: Polymeric particles are provided for use in therapeutic and/or diagnostic procedures. The particles include poly[bis(trifluoroethoxy)phosphazene and/or a derivative thereof which may be present throughout the particles or within an outer coating of the particles. The particles may also include a core having a hydrogel formed from an acrylic-based polymer. Such particles may be provided to a user in specific selected sizes to allow for selective embolization of certain sized blood vessels or localized treatment with an active component agent in specific clinical uses. Particles of the present invention may further be provided as color-coded microspheres or nanospheres to allow ready identification of the sized particles in use. Such color-coded microspheres or nanospheres may further be provided in like color-coded delivery or containment devices to enhance user identification and provide visual confirmation of the use of a specifically desired size of microspheres or nanospheres.
    Type: Application
    Filed: October 7, 2020
    Publication date: January 28, 2021
    Inventors: Ulf FRITZ, Olaf FRITZ, Thomas A. GORDY, Ronald WOJCIK, Jaques BLUMMEL, Alexander KULLER
  • Patent number: 10898696
    Abstract: A comprehensive multi-functional device platform that can be variably configured by clinician operators for patient-specific anatomies and clinical situations for treating complex and total occlusions is provided. This device platform enables physicians of any skill level to effectively treat the most challenging and complex lesions/occlusions more conveniently in less time. The Functionally Integratable Catheter System (“FICS System”) represents a system of “functional units” that can be configured together to operate synergistically, and comprises at least five main “functional units,” including: (a) FICS Support Catheter; (b) FICS Dilator; (c) FICS PTA Catheter; (d) FICS Lock-Grip Handle; and (e) FICS Steering Hub. Each “functional unit” can be provided in a pre-assembled form by the manufacturer, intended to be configured into variable combinations by clinician operators.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: January 26, 2021
    Assignee: CTI Vascular AG
    Inventors: Marc Gianotti, Ulf Fritz, Dragana Gajic
  • Publication number: 20210001096
    Abstract: A functionally integratable catheter system comprising functional units that can be assembled to produce different configurations. The functional units include: one or more FICS support catheters; one or more FICS dilators: one or more FICS PTA catheters; and one or more FICS lock-grip handles. Functional units can be provided in a pre-assembled form by the manufacturer, optionally pre-packaged as a device tray, for assembly into different configurations by clinical operators. The configurational adaptability of the FICS platform enables physicians to efficiently address multiple procedural aspects of treatment processes, including lesion access, lesion penetration, guide-wire negotiation, lesion recanalization, and dilation, by providing in situ treatment options, including intraluminal and/or extraluminal recanalization, and enables multi-stage, patient-customized treatments of complex lesions in vivo, including lesion-length-selective, multi-stage angioplasty treatment.
    Type: Application
    Filed: July 16, 2020
    Publication date: January 7, 2021
    Applicant: CIT Vascular AG
    Inventors: Marc Gianotti, Ulf Fritz, Dragana Gajic
  • Patent number: 10758717
    Abstract: A comprehensive multi-functional device platform that can be variably configured by clinician operators for patient-specific anatomies and clinical situations for treating complex and total occlusions is provided. This device platform enables physicians of any skill level to effectively treat the most challenging and complex lesions/occlusions more conveniently in less time. The Functionally Integratable Catheter System (“FICS System”) represents a system of “functional units” that can be configured together to operate synergistically, and comprises at least four main “functional units,” including: (a) FICS Support Catheter; (b) FICS Dilator; (c) FICS PTA Catheter; and (d) FICS Lock-Grip Handle. Each “functional unit” can be provided in a pre-assembled form by the manufacturer, intended to be configured into variable combinations by clinician operators.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: September 1, 2020
    Assignee: CTI Vascular AG
    Inventors: Marc Gianotti, Ulf Fritz, Dragana Gajic
  • Patent number: 10688276
    Abstract: The current document is directed to length-adjustable catheters and methods that employ length-adjustable catheters to treat malformations, constrictions, obstructions, lesions, and blockages within patients' blood vessels. The length of the shaft of a length-adjustable catheter, to which the current application is directed, can be adjusted over a range of lengths prior to and during medical procedures. In many implementations, length adjustment is accompanied by indications, to the medical provider, of the extent of a length adjustment. The indications may include one or more of visual markings, haptic feedback, radio-opaque markings, and/or other types of indications. In many implementations, the variable-length mechanism of the length-adjustable catheter is mechanically lockable following length adjustment.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: June 23, 2020
    Assignee: CTI Vascular AG
    Inventors: Marc Gianotti, Michael Jetter, Martin Rickert, Dragana Gajic, Sabina Silva, Andreas Bodmer, Valentin Nickel, Ulf Fritz
  • Publication number: 20200155816
    Abstract: The current document is directed to length-adjustable catheters and methods that employ length-adjustable catheters to treat malformations, constrictions, obstructions, lesions, and blockages within patients' blood vessels. The length of the shaft of a length-adjustable catheter, to which the current application is directed, can be adjusted over a range of lengths prior to and during medical procedures. In many implementations, length adjustment is accompanied by indications, to the medical provider, of the extent of a length adjustment. The indications may include one or more of visual markings, haptic feedback, radio-opaque markings, and/or other types of indications. In many implementations, the variable-length mechanism of the length-adjustable catheter is mechanically lockable following length adjustment.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Applicant: CTI Vascular AG
    Inventors: Marc Gianotti, Michael Jetter, Martin Rickert, Dragana Gajic, Sabina Silva, Andreas Bodmer, Valentin Nickel, Ulf Fritz
  • Patent number: 10632005
    Abstract: The present invention relates to a catheter system and methods of using such catheter system for the treatment of vascular and non-vascular pathologies. More specifically, the present invention is directed towards a catheter system for the actuation of a temporarily implantable member elastically deformable by hydraulic means.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: April 28, 2020
    Assignee: CTI VASCULAR AG
    Inventors: Marc Gianotti, Ulf Fritz
  • Publication number: 20190254846
    Abstract: Abstract: The present invention relates to a catheter system and methods of using such catheter system for the treatment of vascular and non-vascular pathologies. More specifically, the present invention is directed towards a catheter system for the actuation of a temporarily implantable member elastically deformable by hydraulic means.
    Type: Application
    Filed: December 14, 2016
    Publication date: August 22, 2019
    Applicant: CTI Vascular AG
    Inventors: Marc GIANOTTI, Ulf FRITZ
  • Publication number: 20180200490
    Abstract: A comprehensive multi-functional device platform that can be variably configured by clinician operators for patient-specific anatomies and clinical situations for treating complex and total occlusions is provided. This device platform enables physicians of any skill level to effectively treat the most challenging and complex lesions/occlusions more conveniently in less time. The Functionally Integratable Catheter System (“FICS System”) represents a system of “functional units” that can be configured together to operate synergistically, and comprises at least four main “functional units,” including: (a) FICS Support Catheter; (b) FICS Dilator; (c) FICS PTA Catheter; and (d) FICS Lock-Grip Handle. Each “functional unit” can be provided in a pre-assembled form by the manufacturer, intended to be configured into variable combinations by clinician operators.
    Type: Application
    Filed: January 11, 2016
    Publication date: July 19, 2018
    Applicant: CTI Vascular AG
    Inventors: Marc Gianotti, Ulf Fritz, Dragana Gajic