Patents by Inventor Ulrich Baxa

Ulrich Baxa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939356
    Abstract: Disclosed are recombinant insect ferritin nanoparticles that can be used to display two different trimeric antigens at an equal ratio. Also disclosed are nucleic acids encoding the recombinant insect ferritin nanoparticles and methods of producing the recombinant insect ferritin nanoparticles. Methods for eliciting an immune response in a subject are also provided.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: March 26, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Peter Kwong, Ivelin Georgiev, Michael Gordon Joyce, Masaru Kanekiyo, Aliaksandr Druz, Ulrich Baxa, Joseph Van Galen, Cheng Cheng, John Mascola, Yaroslav Tsybovsky, Yongping Yang, Barney Graham, Syed Mohammad Moin, Jeffrey Boyington
  • Patent number: 11878998
    Abstract: Embodiments of a recombinant Respiratory Syncytial Virus (RSV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the RSV F ectodomain trimer and methods of producing the RSV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or preventing a RSV infection in a subject by administering a therapeutically effective amount of the recombinant RSV F ectodomain trimer to the subject.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: January 23, 2024
    Assignee: The United States of America, as represented by the Secretary Department of Health and Human Services
    Inventors: Peter Kwong, Barney Graham, John Mascola, Li Ou, Aliaksandr Druz, Man Chen, Wing-Pui Kong, Ivelin Stefanov Georgiev, Emily Rundlet, Michael Gordon Joyce, Yaroslav Tsybovsky, Paul Thomas, Marie Pancera, Mallika Sastry, Cinque Soto, Joseph Van Galen, Guillaume Stewart-Jones, Yongping Yang, Baoshan Zhang, Ulrich Baxa
  • Publication number: 20220064222
    Abstract: Embodiments of a recombinant Respiratory Syncytial Virus (RSV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the RSV F ectodomain trimer and methods of producing the RSV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or preventing a RSV infection in a subject by administering a therapeutically effective amount of the recombinant RSV F ectodomain trimer to the subject.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 3, 2022
    Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Servic
    Inventors: Peter Kwong, Barney Graham, John Mascola, Li Ou, Aliaksandr Druz, Man Chen, Wing-Pui Kong, Ivelin Stefanov Georgiev, Emily Rundlet, Michael Gordon Joyce, Yaroslav Tsybovsky, Paul Thomas, Marie Pancera, Mallika Sastry, Cinque Soto, Joseph Van Galen, Guillaume Stewart-Jones, Yongping Yang, Baoshan Zhang, Ulrich Baxa
  • Patent number: 11174292
    Abstract: Embodiments of a recombinant Respiratory Syncytial Virus (RSV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the RSV F ectodomain trimer and methods of producing the RSV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or preventing a RSV infection in a subject by administering a therapeutically effective amount of the recombinant RSV F ectodomain trimer to the subject.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: November 16, 2021
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Peter Kwong, Barney Graham, John Mascola, Li Ou, Aliaksandr Druz, Man Chen, Wing-Pui Kong, Ivelin Stefanov Georgiev, Emily Rundlet, Michael Gordon Joyce, Yaroslav Tsybovsky, Paul Thomas, Marie Pancera, Mallika Sastry, Cinque Soto, Joseph Van Galen, Guillaume Stewart-Jones, Yongping Yang, Baoshan Zhang, Ulrich Baxa
  • Publication number: 20210198324
    Abstract: Disclosed are recombinant insect ferritin nanoparticles that can be used to display two different trimeric antigens at an equal ratio. Also disclosed are nucleic acids encoding the recombinant insect ferritin nanoparticles and methods of producing the recombinant insect ferritin nanoparticles. Methods for eliciting an immune response in a subject are also provided.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Servic
    Inventors: Peter Kwong, Ivelin Georgiev, Michael Gordon Joyce, Masaru Kanekiyo, Aliaksandr Druz, Ulrich Baxa, Joseph Van Galen, Cheng Cheng, John Mascola, Yaroslav Tsybovsky, Yongping Yang, Barney Graham, Syed Mohammad Moin, Jeffrey Boyington
  • Patent number: 10961283
    Abstract: Disclosed are recombinant insect ferritin nanoparticles that can be used to display two different trimeric antigens at an equal ratio. Also disclosed are nucleic acids encoding the recombinant insect ferritin nanoparticles and methods of producing the recombinant insect ferritin nanoparticles. Methods for eliciting an immune response in a subject are also provided.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: March 30, 2021
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Peter Kwong, Ivelin Georgiev, Michael Gordon Joyce, Masaru Kanekiyo, Aliaksandr Druz, Ulrich Baxa, Joseph Van Galen, Cheng Cheng, John Mascola, Yaroslav Tsybovsky, Yongping Yang, Barney Graham, Syed Mohammad Moin, Jeffrey Boyington
  • Publication number: 20190330279
    Abstract: Disclosed are recombinant insect ferritin nanoparticles that can be used to display two different trimeric antigens at an equal ratio. Also disclosed are nucleic acids encoding the recombinant insect ferritin nanoparticles and methods of producing the recombinant insect ferritin nanoparticles. Methods for eliciting an immune response in a subject are also provided.
    Type: Application
    Filed: June 27, 2017
    Publication date: October 31, 2019
    Applicant: The United States of America, as represented by the Secretary, Dept. of Health and Human Service
    Inventors: Peter Kwong, Ivelin Georgiev, Michael Gordon Joyce, Masaru Kanekiyo, Aliaksandr Druz, Ulrich Baxa, Joseph Van Galen, Rita Chen, Cheng Cheng, John Mascola, Yaroslav Tsybovsky, Yongping Yang, Paul Thomas, Barney Graham, Syed Mohammad Moin, Jeffrey Boyington, Kizzmekia Corbett
  • Patent number: 10400015
    Abstract: HIV-1 Env ectodomain trimers stabilized in a prefusion mature closed conformation and methods of their use and production are disclosed. In several embodiments, the HIV-1 Env ectodomain trimers and/or nucleic acid molecules can be used to generate an immune response to HIV-1 in a subject. In additional embodiments, the therapeutically effective amount of the HIV-1 Env ectodomain trimers can be administered to a subject in a method of treating or preventing HIV-1 infection.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 3, 2019
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Peter Kwong, Marie Pancera, Tongqing Zhou, Ivelin Georgiev, Michael Gordon Joyce, Priyamvada Acharya, Jason Gorman, Yongping Yang, Aliaksandr Druz, Guillaume Stewart-Jones, Rita Chen, Gwo-Yu Chuang, Ulrich Baxa, John Mascola, Rebecca Lynch, Baoshan Zhang, Cheng Cheng
  • Publication number: 20190112340
    Abstract: Embodiments of a recombinant Respiratory Syncytial Virus (RSV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the RSV F ectodomain trimer and methods of producing the RSV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or preventing a RSV infection in a subject by administering a therapeutically effective amount of the recombinant RSV F ectodomain trimer to the subject.
    Type: Application
    Filed: March 29, 2017
    Publication date: April 18, 2019
    Applicant: The United States of America, as represented by the Secretary, Department of Health and Human
    Inventors: Peter Kwong, Barney Graham, John Mascola, Li Ou, Aliaksandr Druz, Man Chen, Wing-Pui Kong, Ivelin Stefanov Georgiev, Emily Rundlet, Michael Gordon Joyce, Yaroslav Tsybovsky, Paul Thomas, Marie Pancera, Mallika Sastry, Cinque Soto, Joseph Van Galen, Guillaume Stewart-Jones, Yongping Yang, Baoshan Zhang, Ulrich Baxa
  • Publication number: 20170233441
    Abstract: HIV-1 Env ectodomain trimers stabilized in a prefusion mature closed conformation and methods of their use and production are disclosed. In several embodiments, the HIV-1 Env ectodomain trimers and/or nucleic acid molecules can be used to generate an immune response to HIV-1 in a subject. In additional embodiments, the therapeutically effective amount of the HIV-1 Env ectodomain trimers can be administered to a subject in a method of treating or preventing HIV-1 infection.
    Type: Application
    Filed: September 4, 2015
    Publication date: August 17, 2017
    Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Serv
    Inventors: Peter Kwong, Marie Pancera, Tongqing Zhou, Ivelin Georgiev, Michael Gordon Joyce, Priyamvada Acharya, Jason Gorman, Yongping Yang, Aliaksandr Druz, Guillaume Stewart-Jones, Rita Chen, Gwo-Yu Chuang, Ulrich Baxa, John Mascola, Rebecca Lynch, Baoshan Zhang, Cheng Cheng