Patents by Inventor Ulrich ETZOLD

Ulrich ETZOLD has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133014
    Abstract: A method for manufacturing a sheet metal component including: annealing a flat steel product comprising 0.05-0.5% C, 0.5-3% Mn, 0.06-1.7% Si, ?0.06% P, ?0.01% S, ?1.0% Al, ?0.15% Ti, ?0.6% Nb, ?0.01% B, ?1.0% Cr, ?1.0% Mo, ?1.0% Cr+Mo, ?0.2% Ca, ?0.1% V, remainder iron and impurities in a continuous furnace under an atmosphere consisting of 0.1-15% hydrogen and remainder nitrogen with a specific dew point and temperature profile; applying a coating consisting of <15% Si, ?5% Fe, in total 0.1-5% of at least one alkaline earth or transition metal and a remainder Al and unavoidable impurities; heating the flat steel product to >Ac3 and ?1000° C. for a time sufficient to introduce a heat energy quantity >100,000-800,000 kJs; hot-forming the flat steel product to form the component; and cooling at least one section of the component at a cooling rate sufficient to generate hardening structures.
    Type: Application
    Filed: December 29, 2023
    Publication date: April 25, 2024
    Inventors: Maria Köyer, Manuela Ruthenberg, Janko Banik, Ulrich Etzold
  • Patent number: 11920243
    Abstract: A method for manufacturing a sheet metal component including: annealing a flat steel product comprising 0.05-0.5% C, 0.5-3% Mn, 0.06-1.7% Si, ?0.06% P, ?0.01% S, ?1.0% Al, ?0.15% Ti, ?0.6% Nb, ?0.01% B, ?1.0% Cr, ?1.0% Mo, ?1.0% Cr+Mo, ?0.2% Ca, ?0.1% V, remainder iron and impurities in a continuous furnace under an atmosphere consisting of 0.1-15% hydrogen and remainder nitrogen with a specific dew point and temperature profile; applying a coating consisting of ?15% Si, ?5% Fe, in total 0.1-5% of at least one alkaline earth or transition metal and a remainder Al and unavoidable impurities; heating the flat steel product to >Ac3 and ?1000° C. for a time sufficient to introduce a heat energy quantity >100,000-800,000 kJs; hot-forming the flat steel product to form the component; and cooling at least one section of the component at a cooling rate sufficient to generate hardening structures.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 5, 2024
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Maria Köyer, Manuela Ruthenberg, Janko Banik, Ulrich Etzold
  • Patent number: 11692234
    Abstract: A flat steel product for hot forming may be produced from a steel substrate that includes a steel comprising 0.1-3% by weight Mn and up to 0.01% by weight B, along with a protective coating that is applied to the steel substrate. The protective coating may be based on Al and may contain up to 20% by weight of other alloy elements. Also disclosed are methods for producing such flat steel products, steel components, and methods for producing steel components. Absorption of hydrogen is minimized during heating necessary for hot forming. This is achieved at least in part through an alloy constituent of 0.1-0.5% by weight of at least one alkaline earth or transition metal in the protective coating, wherein an oxide of the alkaline earth or transition metal is formed on an outer surface of the protective coating during hot forming of the flat steel product.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: July 4, 2023
    Assignees: ThyssenKrupp Steel Europe AG, thyssenkrupp AG
    Inventors: Janko Banik, Ulrich Etzold, Norbert Rössler, Manuela Ruthenberg, Thiemo Wuttke
  • Publication number: 20220228248
    Abstract: A method for manufacturing a sheet metal component including: annealing a flat steel product comprising 0.05-0.5% C, 0.5-3% Mn, 0.06-1.7% Si, ?0.06% P, ?0.01% S, ?1.0% Al, ?0.15% Ti, ?0.6% Nb, ?0.01% B, ?1.0% Cr, ?1.0% Mo, ?1.0% Cr+Mo, ?0.2% Ca, ?0.1% V, remainder iron and impurities in a continuous furnace under an atmosphere consisting of 0.1-15% hydrogen and remainder nitrogen with a specific dew point and temperature profile; applying a coating consisting of ?15% Si, ?5% Fe, in total 0.1-5% of at least one alkaline earth or transition metal and a remainder Al and unavoidable impurities; heating the fat steel product to >Ac3 and ?1000° C. for a time sufficient to introduce a heat energy quantity>100,000-800,000 kJs; hot-forming the flat steel product to form the component; and cooling at least one section of the component at a cooling rate sufficient to generate hardening structures.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 21, 2022
    Inventors: Maria Köyer, Manuela Ruthenberg, Janko Banik, Ulrich Etzold
  • Publication number: 20200255916
    Abstract: A flat steel product for hot forming may be produced from a steel substrate that includes a steel comprising 0.1-3% by weight Mn and up to 0.01% by weight B, along with a protective coating that is applied to the steel substrate. The protective coating may be based on Al and may contain up to 20% by weight of other alloy elements. Also disclosed are methods for producing such flat steel products, steel components, and methods for producing steel components. Absorption of hydrogen is minimized during heating necessary for hot forming. This is achieved at least in part through an alloy constituent of 0.1-0.5% by weight of at least one alkaline earth or transition metal in the protective coating, wherein an oxide of the alkaline earth or transition metal is formed on an outer surface of the protective coating during hot forming of the flat steel product.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Inventors: Janko Banik, Ulrich Etzold, Norbert Rössler, Manuela Ruthenberg, Thiemo Wuttke
  • Patent number: 10669603
    Abstract: A flat steel product for hot forming may be produced from a steel substrate that includes a steel comprising 0.1-3% by weight Mn and up to 0.01% by weight B, along with a protective coating that is applied to the steel substrate. The protective coating may be based on Al and may contain up to 20% by weight of other alloy elements. Also disclosed are methods for producing such flat steel products, steel components, and methods for producing steel components. Absorption of hydrogen is minimized during heating necessary for hot forming. This is achieved at least in part through an alloy constituent of 0.1-0.5% by weight of at least one alkaline earth or transition metal in the protective coating, wherein an oxide of the alkaline earth or transition metal is formed on an outer surface of the protective coating during hot forming of the flat steel product.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: June 2, 2020
    Assignees: ThyssenKrupp Steel Europe AG, ThyssenKrupp AG
    Inventors: Janko Banik, Ulrich Etzold, Norbert Rössler, Manuela Ruthenberg, Thiemo Wuttke
  • Publication number: 20170260601
    Abstract: A flat steel product for hot forming may be produced from a steel substrate that includes a steel comprising 0.1-3% by weight Mn and up to 0.01% by weight B, along with a protective coating that is applied to the steel substrate. The protective coating may be based on Al and may contain up to 20% by weight of other alloy elements. Also disclosed are methods for producing such flat steel products, steel components, and methods for producing steel components. Absorption of hydrogen is minimized during heating necessary for hot forming. This is achieved at least in part through an alloy constituent of 0.1-0.5% by weight of at least one alkaline earth or transition metal in the protective coating, wherein an oxide of the alkaline earth or transition metal is formed on an outer surface of the protective coating during hot forming of the flat steel product.
    Type: Application
    Filed: August 26, 2015
    Publication date: September 14, 2017
    Applicants: ThyssenKrupp Steel Europe AG, ThyssenKrupp AG
    Inventors: Janko BANIK, Ulrich ETZOLD, Norbert RÖSSLER, Manuela RUTHENBERG, Thiemo WUTTKE