Patents by Inventor Ulrich Jager

Ulrich Jager has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10280156
    Abstract: The present invention relates to heteroaromatic chalcone derivatives, particularly the compounds of formula (I) as described and defined herein, pharmaceutical compositions comprising these compounds, and their medical use, including their use in the treatment or prevention of cancer and, in particular, in the treatment or prevention of hematologic malignancies.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: May 7, 2019
    Assignees: Medizinische Universität Wien, Universität Wien
    Inventors: Katrina Vanura, Ulrich Jäger, Thomas Erker, Gerda Brunhofer-Bolzer
  • Publication number: 20170253583
    Abstract: The present invention relates to heteroaromatic chalcone derivatives, particularly the compounds of formula (I) as described and defined herein, pharmaceutical compositions comprising these compounds, and their medical use, including their use in the treatment or prevention of cancer and, in particular, in the treatment or prevention of hematologic malignancies.
    Type: Application
    Filed: August 28, 2015
    Publication date: September 7, 2017
    Inventors: Katrina VANURA, Ulrich JÄGER, Thomas ERKER, Gerda BRUNHOFER-BOLZER
  • Patent number: 9212122
    Abstract: A process for inhibiting unwanted free-radical polymerization of acrylic acid present in a liquid phase P whose acrylic acid content is at least 10% by weight and which, based on the weight of the acrylic acid present therein, additionally comprises at least 100 ppm by weight of propionic acid and at least 100 ppm by weight of glyoxal, in which at least one chemical compound of the element copper is added to the liquid phase P, and the resulting liquid phases P to which a chemical compound of the element copper has been added.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: December 15, 2015
    Assignee: BASF SE
    Inventors: Till Blum, Peter Zurowski, Tobias Johannes Korn, Sylke Haremza, Thorsten Friese, Friedrich-Georg Martin, Ulrich Jäger, Steffen Rissel, Volker Schliephake
  • Patent number: 9096513
    Abstract: A process for inhibiting unwanted free-radical polymerization of acrylic acid present in a liquid phase P whose acrylic acid content is at least 10% by weight and which, based on the weight of the acrylic acid present therein, additionally comprises at least 100 ppm by weight of propionic acid and at least 100 ppm by weight of glyoxal, in which at least one chemical compound of the element copper is added to the liquid phase P, and the resulting liquid phases P to which a chemical compound of the element copper has been added.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: August 4, 2015
    Assignee: BASF SE
    Inventors: Till Blum, Peter Zurowski, Tobias Johannes Korn, Sylke Haremza, Thorsten Friese, Friedrich-Georg Martin, Ulrich Jäger, Steffen Rissel, Volker Schliephake
  • Patent number: 9023682
    Abstract: A method for producing a photovoltaic solar cell, including the following steps: A. texturizing a front (2) of a semiconductor substrate; B. generating a selective emitter doping on the front (2) of the semiconductor substrate by generating on the front (2) a first low-doped region (4) and a local high-doped region (3) within the first low-doped region; and C. applying at least one metal emitter contact structure to the front (2) of the semiconductor substrate, at least in the regions of local high doping, wherein, between method steps B and C, a respective silicon oxide layer (5a, 5b) is generated in a method step B1 simultaneously on the front and back of the semiconductor substrate via thermal oxidation.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: May 5, 2015
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Sebastian Mack, Ulrich Jager, Andreas Wolf, Daniel Biro, Ralf Preu, Gero Kastner
  • Patent number: 8927317
    Abstract: A method for producing a selective doping structure in a semiconductor substrate in order produce a photovoltaic solar cell. The method includes the following steps: A) applying a doping layer (2) to the emitter side of the semiconductor substrate, B) locally heating a melting region of the doping layer (2) and a melting region of the semiconductor substrate lying under the doping layer (2) in such a way that dopant diffuses from the doping layer (2) into the melted semiconductor substrate via liquid-liquid diffusion, so that a high doping region (3) is produced after the melt mixture solidifies, C) producing the planar low doping region by globally heating the semiconductor substrate, D) removing the doping layer (2) and E) removing or converting a layer of the semiconductor substrate on the doping side in such a way that part of the low doping region and of the high doping region close to the surface is removed or is converted into an electrically non-conducting layer.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: January 6, 2015
    Assignees: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V., Albert-Ludwigs-Universität Freiburg
    Inventors: Ulrich Jager, Daniel Biro, Anne-Kristin Volk, Johannes Seiffe, Sebastian Mack, Andreas Wolf, Ralf Preu
  • Patent number: 8900908
    Abstract: The invention relates to a method for local high-doping and contacting of a semiconductor structure which is a solar cell or a precursor of a solar cell and has a silicon semiconductor substrate (1) of a base doping type. The high-doping and contacting is effected by producing a plurality of local high-doping regions of the base doping type in the semiconductor substrate (1) on a contacting side (1a) of the semiconductor substrate and applying a metal contacting layer (7) to the contacting side (1a) or, if applicable, one or more intermediate layers wholly or partially covering the contacting side (1a), to form electrically conductive connections between the metal contacting layer (7) and the semiconductor substrate (1) at the high doping regions.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: December 2, 2014
    Assignees: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V., Albert-Ludwigs-Universität Freiburg
    Inventors: Dominik Suwito, Jan Benick, Ulrich Jager
  • Publication number: 20140228571
    Abstract: In a method of stabilizing acrylic compounds, a liquid phase containing at least one acrylic compound is mixed with at least one metal and at least one ligand. The acrylic compound can be acrylic acid, methacrylic acid, and their respective esters. The metal can be copper, manganese, and cerium. The ligand can be a quinoline compound of formula (I), an N-oxide of a compound of formula (I), 2,2?-bis(2,3-dihydro-3-oxoindolylidene), or an aliphatic y-dentate ligand with y being 2-6 and comprising at least two nitrogen atoms joined by aliphatic or aromatic C1-C4 bridges comprising y-2 further coordinating nitrogen atoms or heteroatoms: where X is OH, NH2, O—(C1-C4)-alkyl, O—C(O)—(C1-C4)-alkyl, or O—C(O)-phenyl; R1 is H, or (C1-C4)-alkyl; R2 is H, (C1-C4)-alkyl, Cl, Br, or SO3H; and R3 is H, Cl or Br.
    Type: Application
    Filed: December 12, 2013
    Publication date: August 14, 2014
    Applicant: BASF SE
    Inventors: Tobias Johannes KORN, Peter Zurowski, Thorsten Friese, Sylke Haremza, Ulrich Jäger, Steffen Rissel, Volker Schliephake
  • Patent number: 8491758
    Abstract: A process for inhibiting polymerization of (meth)acrylic acid and/or (meth)acrylic esters by introducing an oxygenous gas into the (meth)acrylic acid and/or the (meth)acrylic ester, in which the (meth)acrylic acid and/or the (meth)acrylic ester has a degree of purity of at least 95% and is in the liquid state.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 23, 2013
    Assignee: BASF SE
    Inventors: Gunter Lipowsky, Steffen Rissel, Volker Schliephake, Ulrich Jäger, Sylke Haremza
  • Publication number: 20130157401
    Abstract: A method for producing a selective doping structure in a semiconductor substrate in order produce a photovoltaic solar cell. The method includes the following steps: A) applying a doping layer (2) to the emitter side of the semiconductor substrate, B) locally heating a melting region of the doping layer (2) and a melting region of the semiconductor substrate lying under the doping layer (2) in such a way that dopant diffuses from the doping layer (2) into the melted semiconductor substrate via liquid-liquid diffusion, so that a high doping region (3) is produced after the melt mixture solidifies, C) producing the planar low doping region by globally heating the semiconductor substrate, D) removing the doping layer (2) and E) removing or converting a layer of the semiconductor substrate on the doping side in such a way that part of the low doping region and of the high doping region close to the surface is removed or is converted into an electrically non-conducting layer.
    Type: Application
    Filed: June 16, 2011
    Publication date: June 20, 2013
    Applicant: ALBERT-LUDWIGS-UNIVERSITAT FREIBURG
    Inventors: Ulrich Jäger, Daniel Biro, Anne-Kristin Volk, Johannes Seiffe, Sebastian Mack, Andreas Wolf, Ralf Preu
  • Publication number: 20130123367
    Abstract: The present invention relates to vinylogous chalcone derivatives, in particular the compounds of formula (I) as described and defined herein, pharmaceutical compositions comprising these compounds, and their medical use, including their use in the treatment or prevention of cancer, in particular malignant hematological diseases/disorders.
    Type: Application
    Filed: July 27, 2011
    Publication date: May 16, 2013
    Applicant: MEDIZINISCHE UNIVERSITAT WIEN
    Inventors: Thomas Erker, Gerda Brunhofer, Ulrich Jäger, Katrina Vanura, Verena Dirsch, Elke Heiss
  • Publication number: 20130095595
    Abstract: A method for producing a photovoltaic solar cell, including the following steps: A. texturizing a front (2) of a semiconductor substrate; B. generating a selective emitter doping on the front (2) of the semiconductor substrate by generating on the front (2) a first low-doped region (4) and a local high-doped region (3) within the first low-doped region; and C. applying at least one metal emitter contact structure to the front (2) of the semiconductor substrate, at least in the regions of local high doping, wherein, between method steps B and C, a respective silicon oxide layer (5a, 5b) is generated in a method step B1 simultaneously on the front and back of the semiconductor substrate via thermal oxidation.
    Type: Application
    Filed: June 16, 2011
    Publication date: April 18, 2013
    Applicant: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.
    Inventors: Sebastian Mack, Ulrich Jager, Andreas Wolf, Daniel Biro, Ralf Preu, Gero Kastner
  • Publication number: 20120301995
    Abstract: The invention relates to a method for local high-doping and contacting of a semiconductor structure which is a solar cell or a precursor of a solar cell and has a silicon semiconductor substrate (1) of a base doping type. The high-doping and contacting is effected by producing a plurality of local high-doping regions of the base doping type in the semiconductor substrate (1) on a contacting side (1a) of the semiconductor substrate and applying a metal contacting layer (7) to the contacting side (1a) or, if applicable, one or more intermediate layers wholly or partially covering the contacting side (1a), to form electrically conductive connections between the metal contacting layer (7) and the semiconductor substrate (1) at the high doping regions.
    Type: Application
    Filed: January 18, 2011
    Publication date: November 29, 2012
    Applicant: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.
    Inventors: Dominik Suwito, Jan Benick, Ulrich Jager
  • Publication number: 20120085969
    Abstract: A process for inhibiting unwanted free-radical polymerization of acrylic acid present in a liquid phase P whose acrylic acid content is at least 10% by weight and which, based on the weight of the acrylic acid present therein, additionally comprises at least 100 ppm by weight of propionic acid and at least 100 ppm by weight of glyoxal, in which at least one chemical compound of the element copper is added to the liquid phase P, and the resulting liquid phases P to which a chemical compound of the element copper has been added.
    Type: Application
    Filed: October 5, 2011
    Publication date: April 12, 2012
    Applicant: BASF SE
    Inventors: Till Blum, Peter Zurowski, Tobias Johannes Korn, Sylke Haremza, Thorsten Friese, Friedrich-Georg Martin, Ulrich Jäger, Steffen Rissel, Volker Schliephake
  • Publication number: 20110036704
    Abstract: A process for removal of a crude acrylic acid from a product gas mixture which comprises glyoxal as a by-product from a heterogeneously catalyzed partial gas phase oxidation of at least one C3 precursor compound, which comprises the absorption of the acrylic acid in a high-boiling absorbent and the rectificative workup of the resulting adsorbate, and in which absorbent present in the bottoms liquid withdrawn from the bottom space of the absorption column is distilled off in a distillation unit and recycled into the absorption, before high boilers which remain are discharged, and in which the glyoxal content of the crude acrylic acid is reduced by restricting the high boiler residence time in the distillation unit.
    Type: Application
    Filed: June 30, 2010
    Publication date: February 17, 2011
    Applicant: BASF SE
    Inventors: Till BLUM, Peter Zurowski, Steffen Rissel, Sylke Haremza, Thorsten Friese, Ulrich Jäger, Volker Schliephake, Klaus Joachim Müller-Engel, Ulrich Hammon, Frank Höfer
  • Publication number: 20100022734
    Abstract: A process for separating acrylic acid present as a main product and glyoxal present as a by-product in a product gas mixture of a partial gas phase oxidation of a C3 precursor compound, in which a liquid phase P is obtained, which consists of acrylic acid to an extent of at least 70% of its weight and, based on the molar amount of acrylic acid present therein, comprises at least 200 molar ppm of glyoxal, in which the glyoxal is separated from the acrylic acid in the liquid phase P by crystallization.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 28, 2010
    Applicant: BASF SE
    Inventors: Till Blum, Peter Zurowski, Steffen Rissel, Sylke Haremza, Thorsten Friese, Ulrich Jäger, Volker Schliephake, Klaus Joachim Müller-Engel, Ulrich Hammon, Jörg Heilek, Imke Britta Müller
  • Publication number: 20090270652
    Abstract: A process for transferring heat to a liquid F comprising dissolved monomeric acrylic acid, Michael acrylic acid oligomers, and acrylic acid polymer with the aid of an indirect heat exchanger to which are supplied the liquid F with a temperature TF of ?150° C. and a fluid heat carrier W with a temperature of TW>TF, wherein the formation of gas bubbles and/or of thin layers of liquid F adjoining a gas phase is brought about in the liquid F during the flow through the heat exchanger.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 29, 2009
    Applicant: BASF SE
    Inventors: Till BLUM, Peter ZUROWSKI, Steffen RISSEL, Sylke HAREMZA, Thorsten FRIESE, Ulrich JAGER, Volker SCHLIEPHAKE, Klaus Joachim MUELLER-ENGEL, Bernd RUMPF
  • Publication number: 20080149319
    Abstract: A process for transferring heat to a liquid mixture comprising at least one (meth)acrylic monomer in an indirect heat exchanger, wherein a quaternary ammonium salt, a tertiary amine or a salt thereof with a Brønsted acid is added to the liquid mixture to reduce fouling.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 26, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Gunter Lipowsky, Volker Schliephake, Steffen Rissel, Ulrich Jager, Frank Hofer, Sylke Haremza, Peter Zurowski, Klaus Joachim Muller-Engel
  • Patent number: 7390847
    Abstract: A composition for the treatment of metal surfaces and for the deposition of metals or metal alloys on plastics surfaces contains a) at least one polymer as component A, composed of the structural element (1) and at least three structural elements selected from the group consisting of b) water or another solvent which is suitable for dissolving, dispersing, suspending or emulsifying the polymer, as component B; c) if required, surface-active compounds, dispersants, suspending media and/or emulsifiers as component C. In a process for the treatment of a metal surface and a process for the deposition of metals or metal alloys on a plastics surface, the metal or plastics surface is brought into contact with a polymer (component A). Furthermore, polymers (component A) are used for the treatment of metal surfaces and for the deposition of metals or metal alloys on a plastics surface, and polymers composed of special components A?a, A?b and A?c.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: June 24, 2008
    Assignee: BASF SE
    Inventors: Monica Fernandez Gonzalez, Hans-Ulrich Jäger, Peter Neumann, Helmut Witteler
  • Patent number: 7287534
    Abstract: A process for cleaning apparatus in which (meth)acrylic acid-containing organic solvents have been treated and/or generated and contain fouling and/or polymer and residues of organic solvent, in which the apparatus contents are subjected to a steam distillation in the apparatus.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: October 30, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Volker Diehl, Ulrich Jäger, Jürgen Schröder, Joachim Thiel