Patents by Inventor Ulrich LANGNER

Ulrich LANGNER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931600
    Abstract: Techniques are presented for optimizing a treatment plan for charged particle therapy. The method includes obtaining medical image data voxels inside a subject in a reference frame of a radiation source that emits a beam of charged particles at multiple tracks with a controlled emitted energy at each track. Hydrogen density (HD) is determined based on the medical image data. Stopping power ratio (SPR) along a first beam having a first track and first emitted energy is calculated based on HD. A range to a Bragg peak is calculated along the first beam based on the SPR and the first emitted energy. The first beam track or the first emitted energy, or both, is modified based at least in part on the beam range to determine a second track and second emitted energy. Output data that indicates the second track and second emitted energy are sent.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: March 19, 2024
    Assignee: University Of Maryland, Baltimore
    Inventors: Byong Yong Yi, Ulrich Langner, Sina Mossahebi, Chaitanya Kalavagunta
  • Publication number: 20230210476
    Abstract: A method includes providing a proton computed tomography (CT) scanner, and measuring sigma with a scintillator screen at an exit beam for each pencil beam scanned across an object for each gantry angle necessary to determine a total energy loss as the beam traverses an object of unknown thickness or material.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 6, 2023
    Inventor: Ulrich LANGNER
  • Patent number: 11690164
    Abstract: A method for beam therapy is provided. The method includes receiving first data indicating a plurality of target volumes within a target region inside a subject for particle beam therapy relative to a particle beam outlet on a gantry for directing a particle beam from a particle beam source. The method further includes moving automatically, one or more energy modulator components to reduce an energy of the particle beam and deliver the particle beam to the target region such that a Bragg Peak is delivered to at least one target volume of the plurality of target volumes. The method further includes repeating the moving automatically as the particle beam source rotates with the gantry around the subject, without changing the energy of the particle beam at the particle beam outlet, until every target volume is subjected to a Bragg Peak.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: June 27, 2023
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: Byong Yong Yi, Warren D. D'Souza, Ulrich Langner
  • Publication number: 20210361972
    Abstract: Techniques are presented for optimizing a treatment plan for charged particle therapy. The method includes obtaining medical image data voxels inside a subject in a reference frame of a radiation source that emits a beam of charged particles at multiple tracks with a controlled emitted energy at each track. Hydrogen density (HD) is determined based on the medical image data. Stopping power ratio (SPR) along a first beam having a first track and first emitted energy is calculated based on HD. A range to a Bragg peak is calculated along the first beam based on the SPR and the first emitted energy. The first beam track or the first emitted energy, or both, is modified based at least in part on the beam range to determine a second track and second emitted energy. Output data that indicates the second track and second emitted energy are sent.
    Type: Application
    Filed: March 11, 2019
    Publication date: November 25, 2021
    Inventors: Byong Yong Yi, Ulrich Langner, Sina Mossahebi, Chaitanya Kalavagunta
  • Patent number: 10583313
    Abstract: The present disclosure relates to a new scan technique for particle radiation therapy that may be used for cancer treatment. One embodiment relates to a method of mitigating interplay effect in particle radiation therapy in a moving target including a period of movement, where the particle radiation therapy defines a planned dose in each spot of each layer of the moving target. The method comprising dividing the planned dose in each spot into a number of spot repaintings; and generating a scan pattern for each layer by defining a beam-on time at each spot for each spot repainting, and calculating a wait time between consecutive beam-on times to distribute the spot repaintings for each spot of a respective layer are distributed over a duration of an integer number of periods of movement.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: March 10, 2020
    Assignees: Varian Medical Systems Particle Therapy GmbH, University of Maryland, Baltimore
    Inventors: Per Rugaard Poulsen, John Eley, Ulrich Langner, Katja Langen
  • Publication number: 20200022248
    Abstract: A method for beam therapy is provided. The method includes receiving first data indicating a plurality of target volumes within a target region inside a subject for particle beam therapy relative to a particle beam outlet on a gantry for directing a particle beam from a particle beam source. The method further includes moving automatically, one or more energy modulator components to reduce an energy of the particle beam and deliver the particle beam to the target region such that a Bragg Peak is delivered to at least one target volume of the plurality of target volumes. The method further includes repeating the moving automatically as the particle beam source rotates with the gantry around the subject, without changing the energy of the particle beam at the particle beam outlet, until every target volume is subjected to a Bragg Peak.
    Type: Application
    Filed: March 8, 2018
    Publication date: January 16, 2020
    Inventors: Byong Yong Yi, Warren D. D'Souza, Ulrich Langner
  • Publication number: 20180280729
    Abstract: The present disclosure relates to a new scan technique for particle radiation therapy that may be used for cancer treatment. One embodiment relates to a method of mitigating interplay effect in particle radiation therapy in a moving target including a period of movement, where the particle radiation therapy defines a planned dose in each spot of each layer of the moving target. The method comprising dividing the planned dose in each spot into a number of spot repaintings; and generating a scan pattern for each layer by defining a beam-on time at each spot for each spot repainting, and calculating a wait time between consecutive beam-on times to distribute the spot repaintings for each spot of a respective layer are distributed over a duration of an integer number of periods of movement.
    Type: Application
    Filed: February 28, 2018
    Publication date: October 4, 2018
    Inventors: Per Rugaard POULSEN, John ELEY, Ulrich LANGNER, Katja LANGEN