Patents by Inventor Ulrich Maehr

Ulrich Maehr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220203908
    Abstract: A powertrain system may determine a power distribution for a set of power sources of a vehicle. The powertrain system may be coupled to a perception system that may provide perception data indicating a scenario, situation, or environment that has been encountered by the vehicle. The powertrain system may also receive health values. The powertrain system may include machine learning model that may generate the power distribution based on one or more of the perception data, the health values, and a power request.
    Type: Application
    Filed: December 29, 2020
    Publication date: June 30, 2022
    Inventors: Mohak Prafulkumar BHIMANI, Elnaz VAHEDFOROUGH, Melanie SENN, Ulrich MAEHR
  • Patent number: 8367231
    Abstract: The present invention relates to a polymer electrolyte membrane for fuel cells, comprising a polymer matrix of at least one basic polymer and one or more doping agents, wherein particles containing ionogenic groups and having a mean particle diameter in the nanometer range are embedded in the polymer matrix and the particles containing ionogenic groups are distributed homogeneously in the polymer matrix in a concentration of less than 50% relative to the weight of the polymer matrix, as well as to the production and use of same, especially in high-temperature fuel cells.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: February 5, 2013
    Assignees: Elcomax Membranes GmbH, Rhein Chemie Rheinau GmbH, Lanxess Deutschland GmbH
    Inventors: Annette Reiche, Dieter Melzner, Ulrich Mähr, Oliver Gronwald, Werner Obrecht, Thomas Früh, Torsten Ziser
  • Patent number: 7682722
    Abstract: A membrane-electrode assembly and polymer electrolyte fuel cells and methods of production thereof, in which a polymer membrane, containing at least one basic polymer membrane, is sandwiched between two flat gas diffusion electrodes each of which is loaded with a dopant, whereby after reaching a mass transport equilibrium for the exchange of the dopant between the gas diffusion electrodes and the polymer membrane, the polymer membrane has a conductivity of at least 0.1 S/m at a temperature of no less than 25° C.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: March 23, 2010
    Assignee: elcomax membranes GmbH
    Inventors: Dieter Melzner, Annette Reiche, Ulrich Maehr, Suzana Kiel
  • Patent number: 7682723
    Abstract: A membrane for fuel cells, which is characterized by a homogeneous absorption and good retention of doping agents, and which guarantees a high mechanical stability at high temperatures when doped. Such membranes consist of at least one polymer, whose nitrogen atoms are chemically bonded to a central atom of a derivative of a polybasic inorganic oxo acid. The membranes are produced from polymer solutions that are devoid of water and oxo acid derivatives, by heating the solution that has been introduced into a membrane mold until a self-supporting membrane has been formed and then by thermally regulating the latter. Inventive fuel cells having a membrane electrode assembly (MEA) that comprises a membrane of the invention and phosphoric acid as the doping agent have, for example, an impedance of 0.5-1 ?cm2 at a measuring frequency of 1000 Hz and at an operating temperature of 160° C. and a gas flow for hydrogen of 170 mL/min and for air of 570 mL/min.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: March 23, 2010
    Assignee: Volkswagen AG
    Inventors: Dieter Melzner, Annette Reiche, Ulrich Maehr, Suzana Kiel, Stefan Haufe
  • Publication number: 20100068593
    Abstract: The present invention relates to a polymer electrolyte membrane for fuel cells, comprising a polymer matrix of at least one basic polymer and one or more doping agents, wherein particles containing ionogenic groups and having a mean particle diameter in the nanometer range are embedded in the polymer matrix and the particles containing ionogenic groups are distributed homogeneously in the polymer matrix in a concentration of less than 50% relative to the weight of the polymer matrix, as well as to the production and use of same, especially in high-temperature fuel cells.
    Type: Application
    Filed: September 8, 2009
    Publication date: March 18, 2010
    Applicants: ELCOMAX MEMBRANES GMBH, LANXESS DEUTSCHLAND GMBH, RHEIN CHEMIE RHEINAU GMBH
    Inventors: Annette Reiche, Dieter Melzner, Ulrich Mähr, Oliver Gronwald, Werner Obrecht, Thomas Früh, Torsten Ziser
  • Patent number: 7615306
    Abstract: A membrane electrode assembly (MEA) for a fuel cell, which has a planar polymer membrane. This membrane, in a tangentially inner area, is coated on both sides with electrode structure, and, in a tangentially outer area projecting at least on one side beyond the electrode structure coating, is connected to a sealing member. A marginal zone of the polymer membrane is embedded in the elastomer sealing member. The sealing member extends tangentially inward to a transition area that lies tangentially between the outer area and the inner area, where it overlaps the electrode structures on outer faces of the electrode structures, on both of the sides of the polymer membrane.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: November 10, 2009
    Assignee: Elcomax Membranes GmbH
    Inventors: Stefan Haufe, Annette Reiche, Suzana Kiel, Ulrich Maehr, Dieter Melzner
  • Publication number: 20070154778
    Abstract: Gas diffusion electrodes with improved proton conduction between an electrocatalyst located in a catalyst layer and an adjacent polymer electrolyte membrane, capable of being used at operating temperatures up to or above the boiling point of water, ensuring lasting high gas permeability. Also, a production method and corresponding fuel cells. At least one part of the particles of an electrically conductive carrier material in the catalyst layer is at least partially loaded with at least one porous, proton-conducting polymer which can be used up to or above the boiling point of water. Loading and development of the porous structure is carried out in a phase inversion method. The gas diffusion electrodes can be used in high temperature fuel cells working at temperatures up to or above the boiling temperature of water without a drop in performance in continuous operation.
    Type: Application
    Filed: January 8, 2007
    Publication date: July 5, 2007
    Inventors: Stefan Haufe, Annette Reiche, Suzana Kiel, Ulrich Maehr, Dieter Melzner
  • Publication number: 20070087244
    Abstract: A membrane-electrode assembly and polymer electrolyte fuel cells and methods of production thereof, in which a polymer membrane, containing at least one basic polymer membrane, is sandwiched between two flat gas diffusion electrodes each of which is loaded with a dopant, whereby after reaching a mass transport equilibrium for the exchange of the dopant between the gas diffusion electrodes and the polymer membrane, the polymer membrane has a conductivity of at least 0.1 S/m at a temperature of no less than 25° C.
    Type: Application
    Filed: July 19, 2005
    Publication date: April 19, 2007
    Inventors: Dieter Melzner, Annette Reiche, Ulrich Maehr, Suzana Kiel
  • Publication number: 20070072045
    Abstract: A membrane electrode assembly (MEA) for a fuel cell, which has a planar polymer membrane. This membrane, in a tangentially inner area, is coated on both sides with electrode structure, and, in a tangentially outer area projecting at least on one side beyond the electrode structure coating, is connected to a sealing member. A marginal zone of the polymer membrane is embedded in the elastomer sealing member. The sealing member extends tangentially inward to a transition area that lies tangentially between the outer area and the inner area, where it overlaps the electrode structures on outer faces of the electrode structures, on both of the sides of the polymer membrane.
    Type: Application
    Filed: November 29, 2006
    Publication date: March 29, 2007
    Inventors: Stefan Haufe, Annette Reiche, Suzana Kiel, Ulrich Maehr, Dieter Melzner
  • Publication number: 20070003808
    Abstract: A membrane for fuel cells, which is characterized by a homogeneous absorption and good retention of doping agents, and which guarantees a high mechanical stability at high temperatures when doped. Such membranes consist of at least one polymer, whose nitrogen atoms are chemically bonded to a central atom of a derivative of a polybasic inorganic oxo acid. The membranes are produced from polymer solutions that are devoid of water and oxo acid derivatives, by heating the solution that has been introduced into a membrane mold until a self-supporting membrane has been formed and then by thermally regulating the latter. Inventive fuel cells having a membrane electrode assembly (MEA) that comprises a membrane of the invention and phosphoric acid as the doping agent have, for example, an impedance of 0.5-1 ?cm2 at a measuring frequency of 1000 Hz and at an operating temperature of 160° C. and a gas flow for hydrogen of 170 mL/min and for air of 570 mL/min.
    Type: Application
    Filed: August 4, 2006
    Publication date: January 4, 2007
    Inventors: Dieter Melzner, Annette Reiche, Ulrich Maehr, Suzana Kiel, Stefan Haufe