Patents by Inventor Ulrich WALDSCHLÄGER

Ulrich WALDSCHLÄGER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10908103
    Abstract: The present invention relates to an X-ray fluorescence, XRF, spectrometer, for measuring X-ray fluorescence emitted by a target, wherein the XRF spectrometer comprises an X-ray tube with an anode to emit a divergent X-ray beam, a capillary lens that is configured to focus the divergent X-ray beam on the target, an aperture system that is positioned between the anode of the X-ray tube and the capillary lens and comprises at least one pinhole, and a detector that is configured for detecting X-ray fluorescence radiation emitted by the target, wherein the at least one pinhole is configured for being inserted into the divergent X-ray beam and for reducing a beam cross section of the divergent X-ray beam between the anode and the capillary lens. The present invention further relates to an aperture system for a spectrometer, to the use of an aperture system for adjusting the focal depth of a spectrometer and to a method for adjusting the focal depth of as spectrometer.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: February 2, 2021
    Assignee: BRUKER NANO GMBH
    Inventors: Ulrich Waldschläger, Roald Alberto Tagle Berdan
  • Publication number: 20190137422
    Abstract: The present invention relates to an X-ray fluorescence, XRF, spectrometer, for measuring X-ray fluorescence emitted by a target, wherein the XRF spectrometer comprises an X-ray tube with an anode that is emitting a divergent X-ray beam, a capillary lens that is configured to focus the divergent X-ray beam on the target, an aperture system that is positioned between the anode of the X-ray tube and the capillary lens and comprises at least one pinhole, and a detector that is configured for detecting X-ray fluorescence radiation emitted by the target, wherein the at least one pinhole is configured for being inserted into the divergent X-ray beam and for reducing a beam cross section of the divergent X-ray beam between the anode and the capillary lens. The present invention further relates to an aperture system for a spectrometer, to the use of an aperture system for adjusting the focal depth of a spectrometer and to an method for adjusting the focal depth of as spectrometer.
    Type: Application
    Filed: November 6, 2018
    Publication date: May 9, 2019
    Inventors: Ulrich Waldschläger, Roald Alberto Tagle Berdan
  • Patent number: 9971121
    Abstract: The invention relates to a device (98) for the spatial alignment of X-ray optics (100) with an entry point (104) and an exit point (108). The device (98) comprises a parallel displacement mechanism (200) for gauging the entry point (104) of the X-ray optics (100) to a first predetermined point (100) by parallel displacement of the X-ray optics (100). Further, the device (98) comprises a goniometer mechanism (300) for gauging the exit point (108) of the X-ray optics (100) to a second predetermined point (106) by at least approximate pivoting of the X-ray optics (100) around the entry point (104). Further, the invention relates to an apparatus (96) which comprises the device (98) and X-ray optics (100).
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: May 15, 2018
    Assignee: BRUKER NANO GMBH
    Inventors: Thomas Baumann, Ulrich Waldschläger
  • Publication number: 20170162287
    Abstract: A method for scanning a sample by means of X-ray optics for irradiating the sample with X-rays, comprises the following steps: (a) displacing a measuring point, defined by an optical exit point of the X-ray optics, in the sample in a first scanning direction by means of swiveling the X-ray optics about a first swivel axis; (b) detecting radiation emanating from the sample at, at least, two measuring points along the first scanning direction; (c) combining measured values correlating with the detected radiation to form an overall scan.
    Type: Application
    Filed: August 13, 2015
    Publication date: June 8, 2017
    Applicant: BRUKER NANO GMBH
    Inventor: Ulrich WALDSCHLÄGER
  • Publication number: 20150370032
    Abstract: The invention relates to a device (98) for the spatial alignment of X-ray optics (100) with an entry point (104) and an exit point (108). The device (98) comprises a parallel displacement mechanism (200) for gauging the entry point (104) of the X-ray optics (100) to a first predetermined point (100) by means of parallel displacement of the X-ray optics (100). Further, the device (98) comprises a goniometer mechanism (300) for gauging the exit point (108) of the X-ray optics (100) to a second predetermined point (106) by means of the at least approximate pivoting of the X-ray optics (100) around the entry point (104). Further, the invention relates to an apparatus (96) which comprises the device (98) and X-ray optics (100).
    Type: Application
    Filed: February 13, 2014
    Publication date: December 24, 2015
    Applicant: BRUKER NANO GMBH
    Inventors: Thomas BAUMANN, Ulrich WALDSCHLÄGER