Patents by Inventor Unoh Kwon

Unoh Kwon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170207134
    Abstract: The disclosure relates to semiconductor structures and, more particularly, to structures with thinned dielectric material and methods of manufacture. The method includes depositing a high-k dielectric on a substrate. The method further includes depositing a titanium nitride film directly on the high-k while simultaneously etching the high-k dielectric.
    Type: Application
    Filed: March 31, 2017
    Publication date: July 20, 2017
    Inventors: Ruqiang BAO, Takashi ANDO, Aritra DASGUPTA, Kai ZHAO, Unoh KWON, Siddarth A. KRISHNAN
  • Publication number: 20170207132
    Abstract: A method for fabricating a gate stack of a semiconductor device comprises forming a first dielectric layer over a channel region of the device, depositing a first nitride layer on exposed portions of the first dielectric layer, depositing a scavenging layer on the first nitride layer, forming a capping layer over the scavenging layer, removing portions of the capping layer, the scavenging layer, and the first nitride layer to expose a portion of the first dielectric layer in an n-type field effect transistor (nFET) region of the gate stack, forming a barrier layer over the first dielectric layer and the capping layer, forming a first gate metal layer over the barrier layer, depositing a second nitride layer on the first gate metal layer, and depositing a gate electrode material on the second nitride layer.
    Type: Application
    Filed: January 15, 2016
    Publication date: July 20, 2017
    Inventors: Ruqiang Bao, Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan
  • Publication number: 20170200719
    Abstract: A semiconductor device includes a first transistor formed on a substrate, the first transistor including a channel region positioned on the substrate; a second transistor formed on the substrate, the second transistor including a channel region positioned on the substrate; a high-k dielectric layer disposed on the channel region of the first transistor and the channel region of the second transistor; a first transistor metal gate positioned in contact with the high-k dielectric on the first transistor; a second transistor metal gate positioned in contact with the high-k dielectric on the second transistor; an oxygen absorbing barrier disposed in contact with the high-k dielectric between the first transistor and the second transistor; and a conductive electrode material disposed on the first transistor, the second transistor, and the oxygen absorbing barrier.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 13, 2017
    Inventors: Ruqiang Bao, Unoh Kwon, Kai Zhao
  • Patent number: 9691662
    Abstract: Selective deposition of a silicon-germanium surface layer on semiconductor surfaces can be employed to provide two types of channel regions for field effect transistors. Anneal of an adjustment oxide material on a stack of a silicon-based gate dielectric and a high dielectric constant (high-k) gate dielectric can be employed to form an interfacial adjustment oxide layer contacting a subset of channel regions. Oxygen deficiency can be induced in portions of the high-k dielectric layer overlying the interfacial adjustment oxide layer by deposition of a first work function metallic material layer and a capping layer and a subsequent anneal. Oxygen deficiency can be selectively removed by physically exposing portions of the high-k dielectric layer. A second work function metallic material layer and a gate conductor layer can be deposited and planarized to form gate electrodes that provide multiple effective work functions.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: June 27, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Takashi Ando, Min Dai, Balaji Kannan, Siddarth A. Krishnan, Unoh Kwon
  • Patent number: 9660027
    Abstract: After forming a buried nanowire segment surrounded by a gate structure located on a substrate, an epitaxial source region is grown on a first end of the buried nanowire segment while covering a second end of the buried nanowire segment and the gate structure followed by growing an epitaxial drain region on the second end of the buried nanowire segment while covering the epitaxial source region and the gate structure. The epitaxial source region includes a first semiconductor material and dopants of a first conductivity type, while the epitaxial drain region includes a first semiconductor material different from the first semiconductor material and dopants of a second conductivity type opposite the first conductivity type.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: May 23, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan, Jeffrey W. Sleight
  • Publication number: 20170140940
    Abstract: Semiconductor structures and methods of fabricating the same using interrupted deposition processes and multiple laser anneals are provided. The structure includes a high-k gate stack with a high-k bilayer or nanolaminate where a bottom portion of the bilayer is crystallized while a top portion of the bilayer is amorphous.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 18, 2017
    Inventors: Takashi ANDO, Aritra DASGUPTA, Oleg GLUSCHENKOV, Balaji KANNAN, Unoh KWON
  • Publication number: 20170133278
    Abstract: Multiple gate stack portions are formed in a gate cavity by direct metal gate patterning to provide FinFETs having different threshold voltages. The different threshold voltages are obtained by selectively incorporating metal layers with different work functions in different gate stack portions.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Ruqiang Bao, Siddarth A. Krishnan, Unoh Kwon, Keith Kwong Hon Wong
  • Publication number: 20170133477
    Abstract: Semiconductor structures and methods of fabricating the same using interrupted deposition processes and multiple laser anneals are provided. The structure includes a high-k gate stack with a high-k bilayer or nanolaminate where a bottom portion of the bilayer is crystallized while a top portion of the bilayer is amorphous.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 11, 2017
    Inventors: Takashi ANDO, Aritra DASGUPTA, Oleg GLUSCHENKOV, Balaji KANNAN, Unoh KWON
  • Publication number: 20170110539
    Abstract: After forming a buried nanowire segment surrounded by a gate structure located on a substrate, an epitaxial source region is grown on a first end of the buried nanowire segment while covering a second end of the buried nanowire segment and the gate structure followed by growing an epitaxial drain region on the second end of the buried nanowire segment while covering the epitaxial source region and the gate structure. The epitaxial source region includes a first semiconductor material and dopants of a first conductivity type, while the epitaxial drain region includes a first semiconductor material different from the first semiconductor material and dopants of a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 20, 2017
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan, Jeffrey W. Sleight
  • Publication number: 20170110376
    Abstract: The disclosure relates to semiconductor structures and, more particularly, to structures with thinned dielectric material and methods of manufacture. The method includes depositing a high-k dielectric on a substrate. The method further includes depositing a titanium nitride film directly on the high-k while simultaneously etching the high-k dielectric.
    Type: Application
    Filed: October 14, 2015
    Publication date: April 20, 2017
    Inventors: Ruqiang BAO, Takashi ANDO, Aritra DASGUPTA, Kai ZHAO, Unoh KWON, Siddarth A. KRISHNAN
  • Patent number: 9627508
    Abstract: A semiconductor structure includes a substrate and an intrinsic replacement channel. A tunneling field effect transistor (TFET) fin may be formed by the intrinsic replacement channel, a p-fin and an n-fin formed upon the substrate. The p-fin may serve as the source of the TFET and the n-fin may serve as the drain of the TFET. The replacement channel may be formed in place of a sacrificial channel of a diode fin that includes the p-fin, the n-fin, and the sacrificial channel at the p-fin and n-fin junction.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: April 18, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael P. Chudzik, Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan, Jeffrey W. Sleight
  • Patent number: 9613870
    Abstract: Semiconductor structures and methods of fabricating the same using interrupted deposition processes and multiple laser anneals are provided. The structure includes a high-k gate stack with a high-k bilayer or nanolaminate where a bottom portion of the bilayer is crystallized while a top portion of the bilayer is amorphous.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 4, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Aritra Dasgupta, Oleg Gluschenkov, Balaji Kannan, Unoh Kwon
  • Patent number: 9613866
    Abstract: Semiconductor structures and methods of fabricating the same using interrupted deposition processes and multiple laser anneals are provided. The structure includes a high-k gate stack with a high-k bilayer or nanolaminate where a bottom portion of the bilayer is crystallized while a top portion of the bilayer is amorphous.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: April 4, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Aritra Dasgupta, Oleg Gluschenkov, Balaji Kannan, Unoh Kwon
  • Patent number: 9589806
    Abstract: An IC structure including: a first replacement gate stack for the pFET, the first replacement gate stack including: an interfacial layer in a first opening in the dielectric layer; a high-k layer over the interfacial layer in the first opening; a pFET work function metal layer over the high-k layer in the first opening; and a first gate electrode layer over the pFET work function metal layer and substantially filling the first opening; and a second replacement gate stack for the nFET, the second gate stack laterally adjacent to the first gate stack and including: the interfacial layer in a second opening in the dielectric layer; the high-k layer over the interfacial layer in the second opening; a nFET work function metal layer over the high-k layer in the second opening; and a second gate electrode layer over the nFET work function metal layer and substantially filling the second opening.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: March 7, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruqiang Bao, Unoh Kwon, Huihang Dong, John A. Fitzsimmons
  • Patent number: 9583400
    Abstract: A method for fabricating a gate stack of a semiconductor device comprising forming a first dielectric layer over a channel region of the device, forming a barrier layer over the first dielectric layer, forming a first gate metal layer over the barrier layer, forming a capping layer over the first gate metal layer, removing portions of the barrier layer, the first gate metal layer, and the capping layer to expose a portion of the first dielectric layer in a p-type field effect transistor (pFET) region of the gate stack, depositing a first nitride layer on exposed portions of the capping layer and the first dielectric layer, depositing a scavenging layer on the first nitride layer, depositing a second nitride layer on the scavenging layer, and depositing a gate electrode material on the second nitride layer.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: February 28, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan
  • Publication number: 20170047255
    Abstract: Selective deposition of a silicon-germanium surface layer on semiconductor surfaces can be employed to provide two types of channel regions for field effect transistors. Anneal of an adjustment oxide material on a stack of a silicon-based gate dielectric and a high dielectric constant (high-k) gate dielectric can be employed to form an interfacial adjustment oxide layer contacting a subset of channel regions. Oxygen deficiency can be induced in portions of the high-k dielectric layer overlying the interfacial adjustment oxide layer by deposition of a first work function metallic material layer and a capping layer and a subsequent anneal. Oxygen deficiency can be selectively removed by physically exposing portions of the high-k dielectric layer. A second work function metallic material layer and a gate conductor layer can be deposited and planarized to form gate electrodes that provide multiple effective work functions.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 16, 2017
    Inventors: Takashi Ando, Min Dai, Balaji Kannan, Siddarth A. Krishnan, Unoh Kwon
  • Patent number: 9559016
    Abstract: A method for fabricating a gate stack of a semiconductor device comprises forming a first dielectric layer over a channel region of the device, forming a first nitride layer over the first dielectric layer, depositing a scavenging layer on the first nitride layer, forming a capping layer over the scavenging layer, removing portions of the capping layer and the scavenging layer to expose a portion of the first nitride layer in a n-type field effect transistor (nFET) region of the gate stack, forming a first gate metal layer over the first nitride layer and the capping layer, depositing a second nitride layer on the first gate metal layer, and depositing a gate electrode material on the second nitride layer.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 31, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan
  • Publication number: 20170025315
    Abstract: A method for forming a replacement metal gate structure sharing a single work function metal for both the N-FET and the P-FET gates. The method oppositely dopes a high-k material of the N-FET and P-FET gate, respectively, using a single lithography step. The doping allows use of a single work function metal which in turn provides more space in the metal gate opening so that a bulk fill material may occupy more volume of the opening resulting in a lower resistance gate.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 26, 2017
    Inventors: Takashi Ando, Balaji Kannan, Siddarth Krishnan, Unoh Kwon, Shahab Siddiqui
  • Patent number: 9553092
    Abstract: Multiple gate stack portions are formed in a gate cavity by direct metal gate patterning to provide FinFETs having different threshold voltages. The different threshold voltages are obtained by selectively incorporating metal layers with different work functions in different gate stack portions.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 24, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruqiang Bao, Siddarth A. Krishnan, Unoh Kwon, Keith Kwong Hon Wong
  • Patent number: 9548381
    Abstract: A heterojunction tunnel field effect transistor (TFET) has a channel region that includes a first portion of a nanowire, a source region and a drain region that respectively include a second portion and a third portion of a nanowire, and a gate that surrounds the channel region, where the first portion of the nanowire comprises an intrinsic, epitaxial III-V semiconductor. The TFET can be made by selectively etching the epitaxial underlayer to define a tethered (suspended) nanowire that forms a channel region of the device. Source and drain regions can be formed from regrown p-type and n-type epitaxial layers.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: January 17, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan, Jeffrey W. Sleight