Patents by Inventor Uri Shumlak

Uri Shumlak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12283468
    Abstract: Methods and systems are provided for increasing energy output from Z-pinch and other plasma confinement systems. In one example, a system may include memory storing instructions that, if executed by one or more processors, cause the system to adjust one or more parameters to generate a magnetic field which is sufficiently strong to axially compress a fuel gas to induce thermonuclear fusion and increase a fusion energy gain factor greater than a fusion energy gain factor limit attainable by the thermonuclear fusion. In certain examples, adjusting the one or more parameters may include adjusting a duty cycle of a discharge current applied to the fuel gas based, at least in part, on an amount of thermal collisions between fusion byproducts and the fuel gas. In certain examples, by adjusting the duty cycle, the magnetic field may be adjusted to induce or increase the thermal collisions.
    Type: Grant
    Filed: November 15, 2023
    Date of Patent: April 22, 2025
    Assignee: Zap Energy, Inc.
    Inventors: Peter H. Stoltz, Eric T. Meier, Uri Shumlak, Brian A. Nelson
  • Patent number: 12245351
    Abstract: An example method includes directing gas, via one or more first valves, from within an inner electrode to an acceleration region between the inner electrode and an outer electrode that substantially surrounds the inner electrode, directing gas, via two or more second valves, from outside the outer electrode to the acceleration region, and applying, via a power supply, a voltage between the inner electrode and the outer electrode, thereby converting at least a portion of the directed gas into a plasma having a substantially annular cross section, the plasma flowing axially within the acceleration region toward a first end of the inner electrode and a first end of the outer electrode and, thereafter, establishing a Z-pinch plasma that flows between the first end of the outer electrode and the first end of the inner electrode. Related plasma confinement systems and methods are also disclosed herein.
    Type: Grant
    Filed: January 5, 2023
    Date of Patent: March 4, 2025
    Assignee: University of Washington
    Inventors: Uri Shumlak, Brian A. Nelson, Raymond Golingo
  • Patent number: 12219686
    Abstract: Methods and systems are provided for plasma confinement utilizing various electrode and valve configurations. In one example, a device includes a first electrode positioned to define an outer boundary of an acceleration volume, a second electrode arranged coaxially with respect to the first electrode and positioned to define an inner boundary of the acceleration volume, at least one power supply to drive an electric current along a Z-pinch plasma column between the first second electrodes, and a set of valves to provide gas to the acceleration volume to fuel the Z-pinch plasma column, wherein an electron flow of the electric current is in a first direction from the second electrode to the first electrode. In additional or alternative examples, a shaping part is conductively connected to the second electrode to, in a presence of the gas, cause a gas breakdown of the gas to generate a sheared flow velocity profile.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: February 4, 2025
    Assignee: Zap Energy, Inc.
    Inventors: Eric T. Meier, Brian A. Nelson, Uri Shumlak
  • Patent number: 12183556
    Abstract: Methods and systems are provided for increasing energy output from Z-pinch and other plasma confinement systems. In one example, a system may include memory storing instructions that, if executed by one or more processors, cause the system to adjust one or more parameters to generate a magnetic field which is sufficiently strong to axially compress a fuel gas to induce thermonuclear fusion and increase a fusion energy gain factor greater than a fusion energy gain factor limit attainable by the thermonuclear fusion. In certain examples, adjusting the one or more parameters may include adjusting a duty cycle of a discharge current applied to the fuel gas based, at least in part, on an amount of thermal collisions between fusion byproducts and the fuel gas. In certain examples, by adjusting the duty cycle, the magnetic field may be adjusted to induce or increase the thermal collisions.
    Type: Grant
    Filed: May 17, 2023
    Date of Patent: December 31, 2024
    Assignee: Zap Energy, Inc.
    Inventors: Peter H. Stoltz, Eric T. Meier, Uri Shumlak, Brian A. Nelson
  • Patent number: 12127324
    Abstract: Methods and systems are provided for plasma confinement utilizing various electrode and valve configurations. In one example, a device includes a first electrode positioned to define an outer boundary of an acceleration volume, a second electrode arranged coaxially with respect to the first electrode and positioned to define an inner boundary of the acceleration volume, at least one power supply to drive an electric current along a Z-pinch plasma column between the first second electrodes, and a set of valves to provide gas to the acceleration volume to fuel the Z-pinch plasma column, wherein an electron flow of the electric current is in a first direction from the second electrode to the first electrode. In additional or alternative examples, a shaping part is conductively connected to the second electrode to, in a presence of the gas, cause a gas breakdown of the gas to generate a sheared flow velocity profile.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: October 22, 2024
    Assignee: Zap Energy, Inc.
    Inventors: Uri Shumlak, Brian A. Nelson, Eric T. Meier
  • Publication number: 20240212994
    Abstract: Methods and systems are provided for increasing energy output from Z-pinch and other plasma confinement systems. In one example, a system may include memory storing instructions that, if executed by one or more processors, cause the system to adjust one or more parameters to generate a magnetic field which is sufficiently strong to axially compress a fuel gas to induce thermonuclear fusion and increase a fusion energy gain factor greater than a fusion energy gain factor limit attainable by the thermonuclear fusion. In certain examples, adjusting the one or more parameters may include adjusting a duty cycle of a discharge current applied to the fuel gas based, at least in part, on an amount of thermal collisions between fusion byproducts and the fuel gas. In certain examples, by adjusting the duty cycle, the magnetic field may be adjusted to induce or increase the thermal collisions.
    Type: Application
    Filed: November 15, 2023
    Publication date: June 27, 2024
    Inventors: Peter H. Stoltz, Eric T. Meier, Uri Shumlak, Brian A. Nelson
  • Publication number: 20240161938
    Abstract: An example method includes directing gas, via one or more first valves, from within an inner electrode to an acceleration region between the inner electrode and an outer electrode that substantially surrounds the inner electrode, directing gas, via two or more second valves, from outside the outer electrode to the acceleration region, and applying, via a power supply, a voltage between the inner electrode and the outer electrode, thereby converting at least a portion of the directed gas into a plasma having a substantially annular cross section, the plasma flowing axially within the acceleration region toward a first end of the inner electrode and a first end of the outer electrode and, thereafter, establishing a Z-pinch plasma that flows between the first end of the outer electrode and the first end of the inner electrode. Related plasma confinement systems and methods are also disclosed herein.
    Type: Application
    Filed: December 21, 2023
    Publication date: May 16, 2024
    Inventors: Uri SHUMLAK, Brian A. NELSON, Raymond GOLINGO
  • Publication number: 20230377762
    Abstract: Methods and systems are provided for increasing energy output from Z-pinch and other plasma confinement systems. In one example, a system may include memory storing instructions that, if executed by one or more processors, cause the system to adjust one or more parameters to generate a magnetic field which is sufficiently strong to axially compress a fuel gas to induce thermonuclear fusion and increase a fusion energy gain factor greater than a fusion energy gain factor limit attainable by the thermonuclear fusion. In certain examples, adjusting the one or more parameters may include adjusting a duty cycle of a discharge current applied to the fuel gas based, at least in part, on an amount of thermal collisions between fusion byproducts and the fuel gas. In certain examples, by adjusting the duty cycle, the magnetic field may be adjusted to induce or increase the thermal collisions.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 23, 2023
    Inventors: Peter H. Stoltz, Eric T. Meier, Uri Shumlak, Brian A. Nelson
  • Patent number: 11758640
    Abstract: Methods and systems are provided for plasma confinement utilizing various electrode and valve configurations. In one example, a device includes a first electrode positioned to define an outer boundary of an acceleration volume, a second electrode arranged coaxially with respect to the first electrode and positioned to define an inner boundary of the acceleration volume, at least one power supply to drive an electric current along a Z-pinch plasma column between the first second electrodes, and a set of valves to provide gas to the acceleration volume to fuel the Z-pinch plasma column, wherein an electron flow of the electric current is in a first direction from the second electrode to the first electrode. In additional or alternative examples, a shaping part is conductively connected to the second electrode to, in a presence of the gas, cause a gas breakdown of the gas to generate a sheared flow velocity profile.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: September 12, 2023
    Assignee: ZAP ENERGY, INC.
    Inventors: Uri Shumlak, Brian A. Nelson, Eric T. Meier
  • Patent number: 11744001
    Abstract: Methods and systems are provided for plasma confinement utilizing various electrode and valve configurations. In one example, a device includes a first electrode positioned to define an outer boundary of an acceleration volume, a second electrode arranged coaxially with respect to the first electrode and positioned to define an inner boundary of the acceleration volume, at least one power supply to drive an electric current along a Z-pinch plasma column between the first second electrodes, and a set of valves to provide gas to the acceleration volume to fuel the Z-pinch plasma column, wherein an electron flow of the electric current is in a first direction from the second electrode to the first electrode. In additional or alternative examples, a shaping part is conductively connected to the second electrode to, in a presence of the gas, cause a gas breakdown of the gas to generate a sheared flow velocity profile.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: August 29, 2023
    Assignee: ZAP ENERGY, INC.
    Inventors: Eric T. Meier, Brian A. Nelson, Uri Shumlak
  • Publication number: 20230223158
    Abstract: An example method includes directing gas, via one or more first valves, from within an inner electrode to an acceleration region between the inner electrode and an outer electrode that substantially surrounds the inner electrode, directing gas, via two or more second valves, from outside the outer electrode to the acceleration region, and applying, via a power supply, a voltage between the inner electrode and the outer electrode, thereby converting at least a portion of the directed gas into a plasma having a substantially annular cross section, the plasma flowing axially within the acceleration region toward a first end of the inner electrode and a first end of the outer electrode and, thereafter, establishing a Z-pinch plasma that flows between the first end of the outer electrode and the first end of the inner electrode. Related plasma confinement systems and methods are also disclosed herein.
    Type: Application
    Filed: January 5, 2023
    Publication date: July 13, 2023
    Inventors: Uri SHUMLAK, Brian A. NELSON, Raymond GOLINGO
  • Patent number: 11581100
    Abstract: An example method includes directing gas, via one or more first valves, from within an inner electrode to an acceleration region between the inner electrode and an outer electrode that substantially surrounds the inner electrode, directing gas, via two or more second valves, from outside the outer electrode to the acceleration region, and applying, via a power supply, a voltage between the inner electrode and the outer electrode, thereby converting at least a portion of the directed gas into a plasma saving a substantially annular cross section, the plasma flowing axially within the acceleration region toward a first end of the inner electrode and a first end of the outer electrode and, thereafter, establishing a Z-pinch plasma that flows between the first end of the outer electrode and the first end of the inner electrode. Related plasma confinement systems and methods are also disclosed herein.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: February 14, 2023
    Assignee: University of Washington
    Inventors: Uri Shumlak, Brian A. Nelson, Raymond Golingo
  • Publication number: 20220392651
    Abstract: Methods and systems are provided for plasma confinement utilizing various electrode and valve configurations. In one example, a device includes a first electrode positioned to define an outer boundary of an acceleration volume, a second electrode arranged coaxially with respect to the first electrode and positioned to define an inner boundary of the acceleration volume, at least one power supply to drive an electric current along a Z-pinch plasma column between the first second electrodes, and a set of valves to provide gas to the acceleration volume to fuel the Z-pinch plasma column, wherein an electron flow of the electric current is in a first direction from the second electrode to the first electrode. In additional or alternative examples, a shaping part is conductively connected to the second electrode to, in a presence of the gas, cause a gas breakdown of the gas to generate a sheared flow velocity profile.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 8, 2022
    Inventors: Eric T. Meier, Brian A. Nelson, Uri Shumlak
  • Publication number: 20220394840
    Abstract: Methods and systems are provided for plasma confinement utilizing various electrode and valve configurations. In one example, a device includes a first electrode positioned to define an outer boundary of an acceleration volume, a second electrode arranged coaxially with respect to the first electrode and positioned to define an inner boundary of the acceleration volume, at least one power supply to drive an electric current along a Z-pinch plasma column between the first second electrodes, and a set of valves to provide gas to the acceleration volume to fuel the Z-pinch plasma column, wherein an electron flow of the electric current is in a first direction from the second electrode to the first electrode. In additional or alternative examples, a shaping part is conductively connected to the second electrode to, in a presence of the gas, cause a gas breakdown of the gas to generate a sheared flow velocity profile.
    Type: Application
    Filed: June 15, 2022
    Publication date: December 8, 2022
    Inventors: Eric T. Meier, Brian A. Nelson, Uri Shumlak
  • Publication number: 20220394839
    Abstract: Methods and systems are provided for plasma confinement utilizing various electrode and valve configurations. In one example, a device includes a first electrode positioned to define an outer boundary of an acceleration volume, a second electrode arranged coaxially with respect to the first electrode and positioned to define an inner boundary of the acceleration volume, at least one power supply to drive an electric current along a Z-pinch plasma column between the first second electrodes, and a set of valves to provide gas to the acceleration volume to fuel the Z-pinch plasma column, wherein an electron flow of the electric current is in a first direction from the second electrode to the first electrode. In additional or alternative examples, a shaping part is conductively connected to the second electrode to, in a presence of the gas, cause a gas breakdown of the gas to generate a sheared flow velocity profile.
    Type: Application
    Filed: June 15, 2022
    Publication date: December 8, 2022
    Inventors: Uri Shumlak, Brian A. Nelson, Eric T. Meier
  • Publication number: 20220394838
    Abstract: Methods and systems are provided for plasma confinement utilizing various electrode and valve configurations. In one example, a device includes a first electrode positioned to define an outer boundary of an acceleration volume, a second electrode arranged coaxially with respect to the first electrode and positioned to define an inner boundary of the acceleration volume, at least one power supply to drive an electric current along a Z-pinch plasma column between the first second electrodes, and a set of valves to provide gas to the acceleration volume to fuel the Z-pinch plasma column, wherein an electron flow of the electric current is in a first direction from the second electrode to the first electrode. In additional or alternative examples, a shaping part is conductively connected to the second electrode to, in a presence of the gas, cause a gas breakdown of the gas to generate a sheared flow velocity profile.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 8, 2022
    Inventors: Uri Shumlak, Brian A. Nelson, Eric T. Meier
  • Publication number: 20220117072
    Abstract: An example plasma confinement system includes an inner electrode having a rounded first end that is disposed on a longitudinal axis of the plasma confinement system and an outer electrode that at least partially surrounds the inner electrode. The outer electrode includes a solid conductive shell and an electrically conductive material disposed on the solid conductive shell and on the longitudinal axis of the plasma confinement system. The electrically conductive material has a melting point within a range of 170° C. to 800° C. at 1 atmosphere of pressure. Related plasma confinement systems and methods are also disclosed herein.
    Type: Application
    Filed: November 29, 2021
    Publication date: April 14, 2022
    Inventors: Uri Shumlak, Harry S. McLean, Brian A. Nelson
  • Patent number: 11219117
    Abstract: An example plasma confinement system includes an inner electrode having a rounded first end that is disposed on a longitudinal axis of the plasma confinement system and an outer electrode that at least partially surrounds the inner electrode. The outer electrode includes a solid conductive shell and an electrically conductive material disposed on the solid conductive shell and on the longitudinal axis of the plasma confinement system. The electrically conductive material has a melting point within a range of 170° C. to 800° C. at 1 atmosphere of pressure. Related plasma confinement systems and methods are also disclosed herein.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: January 4, 2022
    Assignees: Lawrence Livermore National Security, LLC, University of Washington
    Inventors: Uri Shumlak, Harry S. McLean, Brian A. Nelson
  • Publication number: 20200168350
    Abstract: An example plasma confinement system includes an inner electrode having a rounded first end that is disposed on a longitudinal axis of the plasma confinement system and an outer electrode that at least partially surrounds the inner electrode. The outer electrode includes a solid conductive shell and an electrically conductive material disposed on the solid conductive shell and on the longitudinal axis of the plasma confinement system. The electrically conductive material has a melting point within a range of 170° C. to 800° C. at 1 atmosphere of pressure. Related plasma confinement systems and methods are also disclosed herein.
    Type: Application
    Filed: June 7, 2018
    Publication date: May 28, 2020
    Inventors: Uri SHUMLAK, Harry S. MCLEAN, Brian A. NELSON
  • Publication number: 20200058411
    Abstract: An example method includes directing gas, via one or more first valves, from within an inner electrode to an acceleration region between the inner electrode and an outer electrode that substantially surrounds the inner electrode, directing gas, via two or more second valves, from outside the outer electrode to the acceleration region, and applying, via a power supply, a voltage between the inner in electrode and the outer electrode, thereby converting at least a portion of the directed gas into a plasma saving a substantially annular cross section, the plasma flowing axially within the acceleration region toward a first end of the inner electrode and a first end of the outer electrode and, thereafter, establishing a Z-pinch plasma that flows between the first end of the outer electrode and the first end of the inner electrode. Related plasma confinement systems and methods are also disclosed herein.
    Type: Application
    Filed: February 23, 2018
    Publication date: February 20, 2020
    Inventors: Uri SHUMLAK, Brian A. NELSON, Raymond GOLINGO