Patents by Inventor Urmimala Roy

Urmimala Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10991386
    Abstract: A junction shield (JS) structure is disclosed for providing longitudinal bias to a free layer (FL) having a width (FLW) and magnetization in a cross-track direction between sidewalls in a sensor. The sensor is formed between bottom and top shields and has sidewalls extending from a front side at an air bearing surface (ABS) to a backside that is a stripe height (SH) from the ABS. The JS structure has a single layer (JS1) adjacent to each sensor sidewall and with a magnetization parallel to that of the FL, and a tapered top surface such that JS1 has decreasing thickness with increasing height from the ABS. As aspect ratio or AR (SH/FLW) increases above 1, longitudinal bias increases proportionally to slow an increase in asymmetry as AR increases, and without introducing a loss in amplitude for a reader with low AR.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: April 27, 2021
    Assignee: Headway Technologies, Inc.
    Inventors: Urmimala Roy, Yan Wu
  • Patent number: 10984824
    Abstract: A junction shield (JS) structure and method of forming the same are disclosed for providing longitudinal bias to a free layer (FL) having a width (FLW) and magnetization in a cross-track direction between sidewalls in a sensor. The sensor is formed between bottom and top shields and has sidewalls extending from a front side at an air bearing surface (ABS) to a backside at a stripe height (SH) from the ABS. The JS structure has a lower layer (JS1) with magnetization parallel to that of the FL, and a tapered top surface such that JS1 has decreasing thickness with increasing height from the ABS. As aspect ratio or AR (SH/FLW) increases above 1, longitudinal bias increases proportionally to slow an increase in asymmetry as AR increases, and without decreasing amplitude for a reader with low AR. The JS1 layer may be antiferromagnetically coupled to an upper JS layer for stabilization.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: April 20, 2021
    Assignee: Headway Technologies, Inc.
    Inventors: Urmimala Roy, Yan Wu
  • Publication number: 20200357431
    Abstract: A junction shield (JS) structure and method of forming the same are disclosed for providing longitudinal bias to a free layer (FL) having a width (FLW) and magnetization in a cross-track direction between sidewalls in a sensor. The sensor is formed between bottom and top shields and has sidewalls extending from a front side at an air bearing surface (ABS) to a backside at a stripe height (SH) from the ABS. The JS structure has a lower layer (JS1) with magnetization parallel to that of the FL, and a tapered top surface such that JS1 has decreasing thickness with increasing height from the ABS. As aspect ratio or AR (SH/FLW) increases above 1, longitudinal bias increases proportionally to slow an increase in asymmetry as AR increases, and without decreasing amplitude for a reader with low AR. The JS1 layer may be antiferromagnetically coupled to an upper JS layer for stabilization.
    Type: Application
    Filed: June 30, 2020
    Publication date: November 12, 2020
    Inventors: Urmimala Roy, Yan Wu
  • Publication number: 20200321023
    Abstract: A junction shield (JS) structure is disclosed for providing longitudinal bias to a free layer (FL) having a width (FLW) and magnetization in a cross-track direction between sidewalls in a sensor. The sensor is formed between bottom and top shields and has sidewalls extending from a front side at an air bearing surface (ABS) to a backside that is a stripe height (SH) from the ABS. The JS structure has a single layer (JS1) adjacent to each sensor sidewall and with a magnetization parallel to that of the FL, and a tapered top surface such that JS1 has decreasing thickness with increasing height from the ABS. As aspect ratio or AR (SH/FLW) increases above 1, longitudinal bias increases proportionally to slow an increase in asymmetry as AR increases, and without introducing a loss in amplitude for a reader with low AR.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Inventors: Urmimala Roy, Yan Wu
  • Patent number: 10706878
    Abstract: A junction shield (JS) structure is disclosed for providing longitudinal bias to a free layer (FL) having a width (FLW) and magnetization in a cross-track direction between sidewalls in a sensor. The sensor is formed between bottom and top shields and has sidewalls extending from a front side at an air bearing surface (ABS) to a backside that is a stripe height (SH) from the ABS. The JS structure has a lower layer (JS1) with a magnetization parallel to that of the FL, and a tapered top surface such that JS1 has decreasing thickness with increasing height from the ABS. As aspect ratio or AR (SH/FLW) increases above 1, longitudinal bias increases proportionally to slow an increase in asymmetry as AR increases, and without introducing a loss in amplitude for a reader with low AR. The JS1 layer may be antiferromagnetically coupled to an upper JS layer for stabilization.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: July 7, 2020
    Assignee: Headway Technologies, Inc.
    Inventors: Urmimala Roy, Yan Wu
  • Publication number: 20190287556
    Abstract: A junction shield (JS) structure is disclosed for providing longitudinal bias to a free layer (FL) having a width (FLW) and magnetization in a cross-track direction between sidewalls in a sensor. The sensor is formed between bottom and top shields and has sidewalls extending from a front side at an air bearing surface (ABS) to a backside that is a stripe height (SH) from the ABS. The JS structure has a lower layer (JS1) with a magnetization parallel to that of the FL, and a tapered top surface such that JS1 has decreasing thickness with increasing height from the ABS. As aspect ratio or AR (SH/FLW) increases above 1, longitudinal bias increases proportionally to slow an increase in asymmetry as AR increases, and without introducing a loss in amplitude for a reader with low AR. The JS1 layer may be antiferromagnetically coupled to an upper JS layer for stabilization.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Inventors: Urmimala Roy, Yan Wu
  • Patent number: 10319398
    Abstract: A junction shield (JS) structure is disclosed for providing longitudinal bias to a free layer (FL) having a width (FLW) and magnetization in a cross-track direction between sidewalls in a sensor. The sensor is formed between bottom and top shields and has sidewalls extending from a front side at an air bearing surface (ABS) to a backside that is a stripe height (SH) from the ABS. The JS structure has a lower layer (JS1) with a magnetization parallel to that of the FL, and a tapered top surface such that JS1 has decreasing thickness with increasing height from the ABS. As aspect ratio or AR (SH/FLW) increases above 1, longitudinal bias increases proportionally to slow an increase in asymmetry as AR increases, and without introducing a loss in amplitude for a reader with low AR. The JS1 layer may be antiferromagnetically coupled to an upper JS layer for stabilization.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: June 11, 2019
    Assignee: Headway Technologies, Inc.
    Inventors: Urmimala Roy, Yan Wu
  • Publication number: 20190066718
    Abstract: A junction shield (JS) structure is disclosed for providing longitudinal bias to a free layer (FL) having a width (FLW) and magnetization in a cross-track direction between sidewalls in a sensor. The sensor is formed between bottom and top shields and has sidewalls extending from a front side at an air bearing surface (ABS) to a backside that is a stripe height (SH) from the ABS. The JS structure has a lower layer (JS1) with a magnetization parallel to that of the FL, and a tapered top surface such that JS1 has decreasing thickness with increasing height from the ABS. As aspect ratio or AR (SH/FLW) increases above 1, longitudinal bias increases proportionally to slow an increase in asymmetry as AR increases, and without introducing a loss in amplitude for a reader with low AR. The JS1 layer may be antiferromagnetically coupled to an upper JS layer for stabilization.
    Type: Application
    Filed: August 25, 2017
    Publication date: February 28, 2019
    Inventors: Urmimala Roy, Yan Wu