Patents by Inventor Urs Weber

Urs Weber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11871971
    Abstract: A method of changing a bone angle includes creating an osteotomy between a first portion and a second portion of a tibia of a patient; creating a cavity in the tibia by removing bone material along an axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point; placing a non-invasively adjustable implant into the cavity, the non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, and a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; coupling one of the outer housing or the inner shaft to the first portion of the tibia; coupling the other of the outer housing or the inner shaft to the second portion of the tibia; and remotely operating the driving element to telescopically displace the inner shaft in relation to the outer housing, thus changing an angle between the first porti
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: January 16, 2024
    Assignee: NuVasive Specialized Orthopedics, Inc.
    Inventors: David Skinlo, Thomas B. Buford, Ephraim Akyuz, Thomas Weisel, Roger Pisarnwongs, Adam G. Beckett, Jeffrey Lee Gilbert, Frank Yan Liu, Urs Weber, Edmund J. Roschak, Blair Walker, Scott Pool, Mark T. Dahl
  • Patent number: 11576702
    Abstract: In one embodiment, a non-invasively adjustable spinal system for treatment of a subject having spondylolisthesis includes a first implantable actuator having at least one anchoring structure, the anchoring structure configured to facilitate securement of the first implantable actuator to a portion of the sacrum of the subject. The non-invasively adjustable spinal system can further include an adjustment element, configured to be coupled to the first implantable actuator, the adjustment element having an engagement structure configured to engage at least one transverse process of a lumbar vertebra of the subject. The non-invasively adjustable spinal system can further include a driving element, wherein remote activation of the driving element causes movement of the adjustment element in relation to the first implantable actuator.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: February 14, 2023
    Assignee: NuVasive Specialized Orthopedics, Inc.
    Inventors: Stuart A. Green, Blair Walker, Thomas B. Buford, Urs Weber
  • Patent number: 11491026
    Abstract: An interbody implant comprises one or more elongate members that have superior and inferior surfaces with a height, and medial and lateral surfaces having a width. The height is set so the implant fits into the intervertebral space. The width is less than the height. The interbody implant has a first configuration, a second configuration, and a third configuration. The interbody implant is inserted into the intervertebral space in the first configuration such that medial and lateral surfaces contact the vertebral bodies, and the interbody implant is then actuated into the second configuration such that superior and inferior surfaces engage the vertebral bodies. Actuation of the implant from the first configuration to the second configuration distracts the vertebral bodies. The implant is actuated into the third configuration where the width of the implant is greater than width of the implant in the first or the second configuration.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: November 8, 2022
    Assignee: Spine Innovation, LLC
    Inventors: Robert Eastlack, James Bruffey, Maneesh Bawa, Brian Bowman, Benjamin Arnold, Jude Paganelli, Urs Weber
  • Publication number: 20220323184
    Abstract: A system can be configured to record a position and orientation of a dental component. The system can include a coping and a replica. The coping can include an anti/rotational feature that is configured to mate with an anti-rotational feature of a dental component. The coping can also include an orientation feature that is configured to convey the orientation of the dental component. The replica can include a first anti-rotational feature that corresponds to the anti-rotational feature of the dental component. The replica can also include a second anti-rotational feature that does not correspond to the anti-rotational feature of the dental component.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 13, 2022
    Inventors: Jorg WEITZEL, Urs WEBER, Ibrahim UNAL, Marcel SIEGFRIED
  • Patent number: 11399953
    Abstract: An implant or endoprosthesis suitable to be implanted in human or animal tissue includes two (or more than two) parts to be joined in situ. Each one of the parts includes a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations includes a material which is liquefiable by mechanical vibration and the other one of the joining locations includes a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected by pressing the two device parts against each other and by applying ultrasonic vibration to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: August 2, 2022
    Assignee: WOODWELDING AG
    Inventors: Marcel Aeschlimann, Laurent Torriani, Andrea Müller, Thomas Knecht, Philipp Seiler, Urs Weber, Christopher Rast, Jörg Mayer, Stephanie Mehl, Milica Berra
  • Publication number: 20220096136
    Abstract: A method of changing a bone angle includes creating an osteotomy between a first portion and a second portion of a tibia of a patient; creating a cavity in the tibia by removing bone material along an axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point; placing a non-invasively adjustable implant into the cavity, the non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, and a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; coupling one of the outer housing or the inner shaft to the first portion of the tibia; coupling the other of the outer housing or the inner shaft to the second portion of the tibia; and remotely operating the driving element to telescopically displace the inner shaft in relation to the outer housing, thus changing an angle between the first porti
    Type: Application
    Filed: December 7, 2021
    Publication date: March 31, 2022
    Inventors: David Skinlo, Thomas B. Buford, Ephraim Akyuz, Thomas Weisel, Roger Pisarnwongs, Adam G. Beckett, Jeffrey Lee Gilbert, Frank Yan Liu, Urs Weber, Edmund J. Roschak, Blair Walker, Scott Pool, Mark T. Dahl
  • Patent number: 11259934
    Abstract: A spine stabilization device having an interbody spacer shaped to be inserted between a vertebral body of an upper vertebra and a vertebral body of a lower vertebra. The device further includes a fixation device to be inserted after placement of the interbody spacer, the fixation device having a support portion securing the interbody spacer against escaping from between the vertebral bodies into a ventral direction. The support portion rests against a portion of an anterior surface of the interbody spacer, and includes an anchor. The anchor has an anchoring material portion that is inserted, in a liquid state, into cancellous bone tissue of at least one of the vertebral bodies of the upper and lower vertebra, to thereby infiltrate the cancellous bone tissue, and to harden thereafter so as to fix the support portion to the vertebral body.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: March 1, 2022
    Assignee: SPINEWELDING AG
    Inventors: Andrea Müller, Milica Berra, Marcel Aeschlimann, Mario Lehmann, Urs Weber, Jörg Mayer, Stephen Hochschuler, Hansen Yuan, Frank M. Phillips, Stephanie Mehl, Elmar Mock, Andreas Wenger, Philipp Seiler, Ulrich Berlemann
  • Patent number: 11241265
    Abstract: A perforated sheath is anchored in a tissue opening with the aid of a tool, wherein the anchorage is achieved with the aid of mechanical vibration and a material which is liquefiable by the vibration. The tool includes a vibrating element and a counter element. Distal portions of both elements are introduced into the sheath to be in contact with each other at an interface. The vibrating element is connected to a vibration source and the vibrating element and the counter element are held against each other for effecting liquefaction of the liquefiable material at the interface. Under the effect of the force applied to the vibrating and counter element for holding them against each other, the liquefied material flows from the interface through the sheath perforation and penetrates the tissue.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: February 8, 2022
    Assignee: WOODWELDING AG
    Inventors: Mario Lehmann, Andrea Muller, Urs Weber, Philipp Seiler
  • Patent number: 11213330
    Abstract: A method of changing a bone angle includes creating an osteotomy between a first portion and a second portion of a tibia of a patient; creating a cavity in the tibia by removing bone material along an axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point; placing a non-invasively adjustable implant into the cavity, the non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, and a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; coupling one of the outer housing or the inner shaft to the first portion of the tibia; coupling the other of the outer housing or the inner shaft to the second portion of the tibia; and remotely operating the driving element to telescopically displace the inner shaft in relation to the outer housing, thus changing an angle between the first porti
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 4, 2022
    Assignee: NuVasive Specialized Orthopedics, Inc.
    Inventors: David Skinlo, Thomas B. Buford, Ephraim Akyuz, Thomas Weisel, Roger Pisarnwongs, Adam G. Beckett, Jeffrey Lee Gilbert, Frank Yan Liu, Urs Weber, Edmund J. Roschak, Blair Walker, Scott Pool, Mark T. Dahl
  • Patent number: 11191579
    Abstract: A method of changing a bone angle includes creating an osteotomy between a first portion and a second portion of a tibia of a patient; creating a cavity in the tibia by removing bone material along an axis extending in a substantially longitudinal direction from a first point at the tibial plateau to a second point; placing a non-invasively adjustable implant into the cavity, the non-invasively adjustable implant comprising an adjustable actuator having an outer housing and an inner shaft, telescopically disposed in the outer housing, and a driving element configured to be remotely operable to telescopically displace the inner shaft in relation to the outer housing; coupling one of the outer housing or the inner shaft to the first portion of the tibia; coupling the other of the outer housing or the inner shaft to the second portion of the tibia; and remotely operating the driving element to telescopically displace the inner shaft in relation to the outer housing, thus changing an angle between the first porti
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: December 7, 2021
    Assignee: NUVASIVE SPECIALIZED ORTHOPEDICS, INC.
    Inventors: David Skinlo, Thomas B. Buford, Ephraim Akyuz, Thomas Weisel, Roger Pisarnwongs, Adam G. Beckett, Jeffrey Lee Gilbert, Frank Yan Liu, Urs Weber, Edmund J. Roschak, Blair Walker, Scott Pool, Mark T. Dahl
  • Publication number: 20200330135
    Abstract: In one embodiment, a non-invasively adjustable spinal system for treatment of a subject having spondylolisthesis includes a first implantable actuator having at least one anchoring structure, the anchoring structure configured to facilitate securement of the first implantable actuator to a portion of the sacrum of the subject. The non-invasively adjustable spinal system can further include an adjustment element, configured to be coupled to the first implantable actuator, the adjustment element having an engagement structure configured to engage at least one transverse process of a lumbar vertebra of the subject. The non-invasively adjustable spinal system can further include a driving element, wherein remote activation of the driving element causes movement of the adjustment element in relation to the first implantable actuator.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: Stuart A. Green, Blair Walker, Thomas B. Buford, Urs Weber
  • Patent number: 10751094
    Abstract: In one embodiment, a non-invasively adjustable spinal system for treatment of a subject having spondylolisthesis includes a first implantable actuator having at least one anchoring structure, the anchoring structure configured to facilitate securement of the first implantable actuator to a portion of the sacrum of the subject. The non-invasively adjustable spinal system can further include an adjustment element, configured to be coupled to the first implantable actuator, the adjustment element having an engagement structure configured to engage at least one transverse process of a lumbar vertebra of the subject. The non-invasively adjustable spinal system can further include a driving element, wherein remote activation of the driving element causes movement of the adjustment element in relation to the first implantable actuator.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: August 25, 2020
    Assignee: NuVasive Specialized Orthopedics, Inc.
    Inventors: Stuart A. Green, Blair Walker, Thomas B. Buford, Urs Weber
  • Patent number: 10722369
    Abstract: The fusion device for fusing a synovial joint of a human or animal patient, in particular a human facet joint, finger joint or toe joint, includes two pin-shaped anchorage portions and arranged therebetween a stabilization portion. The anchorage portions include a thermoplastic material which is liquefiable by mechanical vibration. The stabilization portion preferably has a surface which is equipped for enhancing osseointegration. The anchorage portions have a greater thickness and a greater depth than the stabilization portion. Then the fusion device is pushed between the articular surfaces and mechanical vibration, in particular ultrasonic vibration, is applied to the proximal face of the fusion device. Thereby the liquefiable material is liquefied where in contact with the bone tissue and penetrates into the bone tissue, where after re-solidification it constitutes a positive fit connection between the fusion device and the bone tissue.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: July 28, 2020
    Assignee: WW TECHNOLOGY AG
    Inventors: Jörg Mayer, Mario Lehmann, Stephanie Mehl, Elmar Mock, Andrea Müller, Milica Berra, Urs Weber
  • Publication number: 20200069435
    Abstract: An interbody implant comprises one or more elongate members that have superior and inferior surfaces with a height, and medial and lateral surfaces having a width. The height is set so the implant fits into the intervertebral space. The width is less than the height. The interbody implant has a first configuration, a second configuration, and a third configuration. The interbody implant is inserted into the intervertebral space in the first configuration such that medial and lateral surfaces contact the vertebral bodies, and the interbody implant is then actuated into the second configuration such that superior and inferior surfaces engage the vertebral bodies. Actuation of the implant from the first configuration to the second configuration distracts the vertebral bodies. The implant is actuated into the third configuration where the width of the implant is greater than width of the implant in the first or the second configuration.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Robert Eastlack, James Bruffey, Maneesh Bawa, Brian Bowman, Benjamin Arnold, Jude Paganelli, Urs Weber
  • Publication number: 20200030115
    Abstract: An implant or endoprosthesis suitable to be implanted in human or animal tissue includes two (or more than two) parts to be joined in situ. Each one of the parts includes a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations includes a material which is liquefiable by mechanical vibration and the other one of the joining locations includes a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected by pressing the two device parts against each other and by applying ultrasonic vibration to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Marcel Aeschlimann, Laurent Torriani, Andrea Müller, Thomas Knecht, Philipp Seiler, Urs Weber, Christopher Rast, Jörg Mayer, Stephanie Mehl, Milica Berra
  • Patent number: 10512551
    Abstract: An interbody implant comprises one or more elongate members that have superior and inferior surfaces with a height, and medial and lateral surfaces having a width. The height is set so the implant fits into the intervertebral space. The width is less than the height. The interbody implant has a first configuration, a second configuration, and a third configuration. The interbody implant is inserted into the intervertebral space in the first configuration such that medial and lateral surfaces contact the vertebral bodies, and the interbody implant is then actuated into the second configuration such that superior and inferior surfaces engage the vertebral bodies. Actuation of the implant from the first configuration to the second configuration distracts the vertebral bodies. The implant is actuated into the third configuration where the width of the implant is greater than width of the implant in the first or the second configuration.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: December 24, 2019
    Assignee: Spine Innovation, LLC
    Inventors: Robert Eastlack, James Bruffey, Maneesh Bawa, Brian Bowman, Benjamin Arnold, Jude Paganelli, Urs Weber
  • Patent number: 10507083
    Abstract: A medical method of affixing an element to a surface of dentine, tooth enamel, bone tissue, or corresponding substitute material. The method includes the steps of: providing an attachment composition, the attachment composition having a mixture of: a thermoplastic component; and a hardenable (for example curable) component. The hardenable component is different from the thermoplastic component. The method further includes the steps of: positioning the attachment composition relative to the surface of dentine, tooth enamel, bone tissue, or corresponding substitute material; and activating the attachment composition to attach to the surface or to attach to the element positioned relative to the surface. The step of activating the attachment composition includes activating the attachment composition by means of mechanical vibration.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: December 17, 2019
    Assignee: WOODWELDING AG
    Inventors: Jörg Mayer, Andrea Mueller, Urs Weber
  • Patent number: 10470893
    Abstract: An implant or endoprosthesis suitable to be implanted in human or animal tissue includes two (or more than two) parts to be joined in situ. Each one of the parts includes a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations includes a material which is liquefiable by mechanical vibration and the other one of the joining locations includes a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected by pressing the two device parts against each other and by applying ultrasonic vibration to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: November 12, 2019
    Assignee: WOODWELDING AG
    Inventors: Marcel Aeschlimann, Laurent Torriani, Andrea Müller, Thomas Knecht, Philipp Seiler, Urs Weber, Christopher Rast, Jörg Mayer, Stephanie Mehl, Milica Berra
  • Publication number: 20190314074
    Abstract: A perforated sheath is anchored in a tissue opening with the aid of a tool, wherein the anchorage is achieved with the aid of mechanical vibration and a material which is liquefiable by the vibration. The tool includes a vibrating element and a counter element. Distal portions of both elements are introduced into the sheath to be in contact with each other at an interface. The vibrating element is connected to a vibration source and the vibrating element and the counter element are held against each other for effecting liquefaction of the liquefiable material at the interface. Under the effect of the force applied to the vibrating and counter element for holding them against each other, the liquefied material flows from the interface through the sheath perforation and penetrates the tissue.
    Type: Application
    Filed: June 27, 2019
    Publication date: October 17, 2019
    Inventors: Mario Lehmann, Andrea Müller, Urs Weber, Philipp Seiler
  • Patent number: 10363077
    Abstract: A perforated sheath is anchored in a tissue opening with the aid of a tool, wherein the anchorage is achieved with the aid of mechanical vibration and a material which is liquefiable by the vibration. The tool includes a vibrating element and a counter element. Distal portions of both elements are introduced into the sheath to be in contact with each other at an interface. The vibrating element is connected to a vibration source and the vibrating element and the counter element are held against each other for effecting liquefaction of the liquefiable material at the interface. Under the effect of the force applied to the vibrating and counter element for holding them against each other, the liquefied material flows from the interface through the sheath perforation and penetrates the tissue.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: July 30, 2019
    Assignee: WOODWELDING AG
    Inventors: Mario Lehmann, Andrea Müller, Urs Weber, Philipp Seiler