Patents by Inventor Ursula SCHELL

Ursula SCHELL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102073
    Abstract: Provided are biosynthetic processes for producing sterol derivatives, and to non-naturally occurring organisms capable of producing sterol derivatives. More specifically, genetically modified non-naturally occurring organisms for producing KCEA, KCDA, and related compounds, from cholesterol, ?-sitosterol, campesterol and their analogs, are provided.
    Type: Application
    Filed: June 8, 2021
    Publication date: March 28, 2024
    Inventors: JAYACHANDRA P. REDDY, J. GREGORY REID, RICHARD REUMERMAN, BERNHARD J. PAUL, URSULA SCHELL
  • Publication number: 20230416800
    Abstract: 7?-hydroxylation systems are provided, as well as methods for producing ?P-hydroxy derivatives of lithocholic acid and 3-keto-lithocholic acid from such systems. Also provided are recombinant organisms useful for the production of such enzymatic systems, and to plasmids that encode for such enzymes.
    Type: Application
    Filed: November 29, 2021
    Publication date: December 28, 2023
    Inventors: J. GREGORY REID, JAYACHANDRA P. REDDY, MATT GREGORY, URSULA SCHELL, BERNHARD J. PAUL
  • Patent number: 10927352
    Abstract: Use of a catalyst in a method of reducing a substrate, the method comprising contacting a substrate with a catalyst, optionally in the presence of a co-substrate, thereby to generate a reduced substrate. The catalyst is a polypeptide comprising an amino acid sequence having at least 70% identity to SEQ ID NO: 7. In some methods, the substrate concentration is at least 50 mM.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 23, 2021
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Beatriz Dominguez, Ursula Schell, Christian Kratzer, Thomas Kalthoff
  • Patent number: 10927353
    Abstract: Use of a catalyst in a method of reducing a substrate, the method comprising contacting a substrate with a catalyst, optionally in the presence of a co-substrate, thereby to generate a reduced substrate. The catalyst is a polypeptide comprising an amino acid sequence having at least 70% identity to SEQ ID NO: 1, SEQ ID NO: 7 or SEQ ID NO: 9. In the method the substrate concentration is at least 50 mM.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 23, 2021
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Beatriz Dominguez, Ursula Schell, Christian Kratzer, Thomas Kalthoff
  • Patent number: 10829743
    Abstract: Disclosed is a method that includes use of a catalyst in a method of reducing a substrate, the method including contacting a substrate with a catalyst, optionally in the presence of a co-substrate, thereby to generate a reduced substrate. The catalyst is a polypeptide including an amino acid sequence having at least 70% identity to SEQ ID NO: 1, SEQ ID NO: 7 or SEQ ID NO: 9. In the method the substrate concentration is at least 50 mM.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: November 10, 2020
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Beatriz Dominguez, Ursula Schell, Christian Kratzer, Thomas Kalthoff
  • Publication number: 20180362939
    Abstract: Use of a catalyst in a method of reducing a substrate, the method comprising contacting a substrate with a catalyst, optionally in the presence of a co-substrate, thereby to generate a reduced substrate. The catalyst is a polypeptide comprising an amino acid sequence having at least 70% identity to SEQ ID NO: 1, SEQ ID NO: 7 or SEQ ID NO: 9. In the method the substrate concentration is at least 50 mM.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Inventors: Beatriz Dominguez, Ursula Schell, Christian Kratzer, Thomas Kalthoff
  • Publication number: 20180362938
    Abstract: Use of a catalyst in a method of reducing a substrate, the method comprising contacting a substrate with a catalyst, optionally in the presence of a co-substrate, thereby to generate a reduced substrate. The catalyst is a polypeptide comprising an amino acid sequence having at least 70% identity to SEQ ID NO: 7. In some methods, the substrate concentration is at least 50 mM.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Inventors: Beatriz Dominquez, Ursula Schell, Christian Kratzer, Thomas Kalthoff
  • Publication number: 20170226485
    Abstract: Disclosed is a method that includes use of a catalyst in a method of reducing a substrate, the method including contacting a substrate with a catalyst, optionally in the presence of a co-substrate, thereby to generate a reduced substrate. The catalyst is a polypeptide including an amino acid sequence having at least 70% identity to SEQ ID NO: 1, SEQ ID NO: 7 or SEQ ID NO: 9.
    Type: Application
    Filed: August 6, 2015
    Publication date: August 10, 2017
    Inventors: Beatriz DOMINGUEZ, Ursula SCHELL, Christian KRATZER, Thomas KALTHOFF
  • Publication number: 20120073726
    Abstract: An automated in-line feed-through system integrating the delivery, application and infusion of a resin to one or more fiber tows and layup of the one or more infused fiber tows to form a composite structure. The system includes an automated resin delivery, deposition and infusion system configured to deposit the resin on a respective one of the one or more fiber tows and form the infused fiber tows. The system integrates an automated layup system including a compaction roller configured to adhere the one or more infused fiber tows to a substrate. The system further includes a controller configured to control a flow rate of the resin, control the temperature of the resin, the infused fiber tows and the automated layup system, and control tension of the one or more infused fiber tows within the automated layup system. Other aspects of the automated in-line system are also provided.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rainer Koeniger, Mark Ernest Vermilyea, Shu Ching Quek, Stefaan Guido Van Nieuwenhove, Theodosia Kourkoutsaki, Julian Thomas O'Flynn, Thomas Kluge, Julia Susanne Ursula Schell, Bruno Betoni Parodi, Mile Ostojic, Thomas Koerwien