Patents by Inventor Ut Tran

Ut Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8491801
    Abstract: A method and system provides a near-field transducer (NFT) for an energy assisted magnetic recording (EAMR) transducer. The method and system include forming a sacrificial NFT structure having a shape a location corresponding to the NFT. A dielectric layer is deposited. A portion of the dielectric layer resides on the sacrificial NFT structure. At least this portion of the dielectric layer on the sacrificial structure is removed. The sacrificial NFT structure is removed, exposing an NFT trench in the dielectric layer. At least one conductive layer for the NFT is deposited. A first portion of the conductive layer(s) reside in the NFT trench. A second portion of the conductive layer(s) external to the NFT trench is removed to form the NFT.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: July 23, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shawn M. Tanner, Yufeng Hu, Ut Tran, Zhongyan Wang
  • Patent number: 8488272
    Abstract: A magnetic recording transducer includes a main pole including a nose portion, the nose portion terminating at an air-bearing surface (ABS). The magnetic recording transducer further includes at least one coil having a coil front distal from the ABS, and at least one side shield, the at least one side shield extending from at the ABS to not further than the coil front.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: July 16, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Zhigang Bai, Kevin K. Lin
  • Patent number: 8456963
    Abstract: An energy assisted magnetic recording (EAMR) disk drive comprises a suspension and a slider having a back side, a laser-facing surface, and an air-bearing surface (ABS) opposite the back side. The slider is mounted to the suspension on the back side. The disk drive further comprises an EAMR transducer coupled with the slider, a portion of the EAMR transducer residing in proximity to the ABS and on the laser-facing surface of the slider. The disk drive further comprises a laser coupled with the suspension and having a light emitting surface facing the laser-facing surface of the slider. The laser has an optic axis substantially parallel to the suspension. The laser provides energy substantially along the optic axis and is optically coupled with the EAMR transducer via free space. The EAMR transducer receives the energy from the laser and writes to the media using the energy.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: June 4, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yufeng Hu, Ruolin Li, Ut Tran, Jinshan Li
  • Patent number: 8456964
    Abstract: A method and system for providing an EAMR transducer is described. The EAMR transducer is coupled with a laser for providing energy and has an ABS that resides near a media during use. The EAMR transducer includes a write pole, coil(s) that energize the pole, a near field transducer (NFT) proximate to the ABS, a waveguide, and a reflector. The write pole has a back gap region and writes to a region of the media. The NFT focuses the energy onto the media. The waveguide directs the energy from the laser toward the NFT at an incident angle with respect to the ABS. A first portion of the energy reflects off of the ABS at a reflected angle. The reflector receives the first portion of the energy from the ABS and reflects a second portion of the energy toward the ABS. The NFT resides between the waveguide and the reflector.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: June 4, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Hongxing Yuan, Shing Lee, Zhong Shi, Jinshan Li, Ut Tran
  • Patent number: 8385158
    Abstract: A method and system for fabricating an energy assisted magnetic recording (EAMR) transducer is described. The EAMR transducer has an air-bearing surface (ABS) and a waveguide. The method includes providing a planarized near field transducer (NFT) for the waveguide and forming a sloped surface on the planarized NFT. The sloped surface has a front edge separated from the ABS by a distance. The method and system also include providing a write pole on the sloped surface.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: February 26, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yufeng Hu, Ut Tran
  • Patent number: 8339738
    Abstract: A method for fabricating a magnetic transducer having an air-bearing surface (ABS) is provided. The method comprises providing an underlayer, and providing a main pole residing on the underlayer and having a front and a rear. The step of providing a main pole further includes providing a first portion having a first magnetic moment, the first portion having a front face at the ABS and terminating between the ABS and the rear of the main pole, and providing a second portion having a second magnetic moment. A part of the second portion resides on the first portion, and another part of the second portion resides between the first portion of the main pole and the rear of the main pole. The first magnetic moment is less than the second magnetic moment.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: December 25, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Zhigang Bai
  • Patent number: 8307540
    Abstract: A method provides an EAMR transducer. A sacrificial post is provided on an NFT distal from the ABS. This post has an edge proximate and substantially parallel to the ABS. A sacrificial mask is provided on the NFT between the post and the ABS. Optical material(s) are provided. The post is between the optical material(s) and the ABS. The post is removed. A heat sink post corresponding to the post is provided. The heat sink post has a bottom thermally coupled with the NFT and an edge proximate and substantially parallel to the ABS. Part of the heat sink post is removed, forming a heat sink having a top surface at an acute angle from the ABS. Nonmagnetic material(s) are provided on the optical material(s). A pole having a bottom surface thermally coupled with the heat sink and coil(s) are provided.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: November 13, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Kevin K. Lin, Yufeng Hu
  • Patent number: 8276258
    Abstract: A method and system provide a magnetic transducer that includes an underlayer and a first nonmagnetic layer on the underlayer. The method and system include providing a first trench in the first nonmagnetic layer. The first trench has at least one edge corresponding to at least one side shield. The method and system also include providing a second nonmagnetic layer in the first trench and providing a second trench in the second nonmagnetic layer. The method and system include providing the main pole. At least part of the main pole resides in the second trench. The method and system further include removing at least a portion of the second nonmagnetic layer between the edge(s) and the main pole. The method and system also provide the side shield(s) in the first trench. The side shield(s) extend from at least an air-bearing surface location to not further than a coil front location.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: October 2, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Zhigang Bai
  • Patent number: 8277669
    Abstract: A method and system for providing a pole of magnetic transducer having an air-bearing surface (ABS) are described. Leading shield and planarization stop layers are provided. Portions of the planarization stop and shield layers distal from the ABS location are removed, providing a depression forming a bevel. The bevel has an angle greater than zero and less than ninety degrees. An intermediate layer having a top surface substantially perpendicular to the ABS location is provided. Part of the intermediate layer is removed, forming a trench having a bottom corresponding to the leading shield and a location and profile corresponding to the pole. A nonmagnetic layer is provided at least partially in the trench. The pole with a leading edge bevel corresponding to the bevel is provided in the trench. A capping layer covering the pole is provided, at least part of the intermediate layer removed, and a wrap-around shield provided.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 2, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Tsung Yuan Chen, Yimin Guo, Jinqiu Zhang, Ut Tran
  • Patent number: 8228633
    Abstract: A method and system provide a magnetic transducer that includes an air-bearing surface (ABS). The magnetic transducer includes an underlayer and a main pole residing on the underlayer. The main pole includes a front and a rear. The front resides at the ABS, while the rear is distal from the ABS. The main pole also includes a first portion having a first magnetic moment and a second portion having a second magnetic moment. The first portion has a front face at the ABS and terminates between the ABS and the rear of the main pole. A part of the second portion resides on the first portion, while another part of the second portion resides between the first portion of the main pole and the rear of the main pole. The first magnetic moment is less than the second magnetic moment.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: July 24, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Zhigang Bai
  • Patent number: 8200054
    Abstract: A magnetic head comprising a waveguide coupler for coupling incident electromagnetic (EM) radiation into a waveguide is disclosed. The waveguide coupler includes a bottom clad layer and a waveguide core layer formed above the bottom clad layer. An interface between the bottom clad layer and the waveguide core layer includes a first grating having a first period and a first etch depth, which are configured to couple a first portion of the incident EM radiation into the waveguide core layer. The waveguide coupler can further comprise a top clad layer formed above the waveguide core layer. An interface between the waveguide core layer and the top clad layer includes a second grating having a second period and a second etch depth. The second period and the second etch depth are configured to couple a second portion of the incident EM radiation into the waveguide core layer.
    Type: Grant
    Filed: April 19, 2009
    Date of Patent: June 12, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ruolin Li, Yufeng Hu, Ut Tran
  • Patent number: 8166631
    Abstract: A method provides a magnetic transducer that includes an underlayer and a nonmagnetic layer on the underlayer. The method includes providing a plurality of trenches in the nonmagnetic layer. A first trench of corresponds to a main pole, while at least one side trench corresponds to at least one side shield. The method also includes providing mask covering the side trench(es) and providing the main pole. At least a portion of the main pole resides in the first trench. The method also includes removing at least a portion of the nonmagnetic layer residing between the side trench(es) and the main pole. The method also includes providing at least one side shield. The shield(s) extend from at least an air-bearing surface location to not further than a coil front location.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: May 1, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Zhigang Bai, Kevin K. Lin
  • Patent number: 8125856
    Abstract: A method and system for providing an energy assisted magnetic recording (EAMR) disk drive are described. A media for storing data and a slider are provided. The slider has a back side, a trailing face, and an air-bearing surface (ABS) opposite to the back side. At least one laser is coupled with the trailing face of the slider, and has an optic axis substantially parallel to the trailing face. The laser(s) provide energy substantially along the optic axis. Optics are coupled with the trailing face of the slider and receive the energy from the laser(s) via free space. At least one EAMR transducer coupled with the slider. At least part of the EAMR transducer resides in proximity to the ABS. The optics direct the energy from the laser(s) to the EAMR transducer(s). The EAMR transducer(s) receive the energy from the optics and write to the media using the energy.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: February 28, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ruolin Li, Ut Tran, Yufeng Hu, Jinshan Li
  • Patent number: 8098999
    Abstract: A tunable filter may be utilized to successively tune to different wavelengths. As each wavelength of the wavelength division multiplexed signal is extracted, it may be successively power monitored. Thus, power monitoring may done without requiring separate power monitors for each channel. This results in considerable advantages in some embodiments, including reduced size, reduced complexities in fabrication, and reduced yield issues in some embodiments.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: January 17, 2012
    Assignee: Intel Corporation
    Inventors: Ruolin Li, Anders Grunnet-Jepsen, John Sweetser, Ut Tran
  • Patent number: 8077434
    Abstract: A method and system for providing a magnetic transducer having an air-bearing surface (ABS) are described. The magnetic transducer includes a base layer, a perpendicular magnetic recording (PMR) pole on the base layer, an additional pole, a write shield, a write gap between the PMR pole and a portion of the write shield, and coil(s) that energize at least the additional pole. The base layer includes a first portion proximate to the ABS and a second portion recessed from the ABS. The first portion is nonmagnetic, while the second portion is magnetic. The PMR pole has a first front portion proximate to the ABS. The additional pole has a second front portion recessed from the ABS. At least a portion of the additional pole resides between the PMR pole and write shield. At least a portion of the write gap resides on the front portion of the PMR pole.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: December 13, 2011
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yong Shen, Lei Larry Zhang, Yingjian Chen, Ut Tran
  • Patent number: 8077557
    Abstract: A magnetic recording device comprises a multi-aperture vertical cavity surface emitting laser (VCSEL) operably coupled to a magnetic recording head and a plurality of waveguides disposed in the magnetic recording head. Each of the plurality of waveguides has a first end coupled to a different aperture of the multi-aperture VCSEL. The magnetic recording device further comprises a near field transducer disposed in the magnetic recording head. Each of the plurality of waveguides has a second end coupled to the near field transducer.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: December 13, 2011
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yufeng Hu, Ruolin Li, Ut Tran, Jinshan Li
  • Patent number: 8057108
    Abstract: Embodiments of an optical detection apparatus are disclosed which may include one or more of a waveguide, a trench formed in the waveguide, a reflective surface, and a photodetector. The waveguide may be formed in a semiconductor substrate to propagate an optical signal received at a first end of the waveguide. The trench may also be formed in the waveguide having a first sidewall and a second sidewall, the first and second sidewalls forming first and second angles with the waveguide's propagation direction. The second sidewall may include a reflective surface formed thereon. The photodetector may be configured to receive an optical signal propagated in the waveguide, through the first sidewall and reflected from the reflective surface on the second sidewall.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: November 15, 2011
    Assignee: Intel Corporation
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli, Gennady Farber, Hai-Feng Liu, Hamid Eslampour, Ut Tran, William B. Wong, Ruolin Li, Jesper Arentoft Jayaswal
  • Publication number: 20100296773
    Abstract: Embodiments of an optical detection apparatus are disclosed which may include one or more of a waveguide, a trench formed in the waveguide, a reflective surface, and a photodetector. The waveguide may be formed in a semiconductor substrate to propagate an optical signal received at a first end of the waveguide. The trench may also be formed in the waveguide having a first sidewall and a second sidewall, the first and second sidewalls forming first and second angles with the waveguide's propagation direction. The second sidewall may include a reflective surface formed thereon. The photodetector may be configured to receive an optical signal propagated in the waveguide, through the first sidewall and reflected from the reflective surface on the second sidewall.
    Type: Application
    Filed: July 30, 2010
    Publication date: November 25, 2010
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli, Gennady Farber, Hai-Feng Liu, Hamid Eslampour, Ut Tran, William B. Wong, Ruolin Lin, Jesper Arentoft Jayaswal
  • Patent number: 7780360
    Abstract: Embodiments of an optical detection apparatus are disclosed which may include one or more of a waveguide, a trench formed in the waveguide, a reflective surface, and a photodetector. The waveguide may be formed in a semiconductor substrate to propagate an optical signal received at a first end of the waveguide. The trench may also be formed in the waveguide having a first sidewall and a second sidewall, the first and second sidewalls forming first and second angles with the waveguide's propagation direction. The second sidewall may include a reflective surface formed thereon. The photodetector may be configured to receive an optical signal propagated in the waveguide, through the first sidewall and reflected from the reflective surface on the second sidewall.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: August 24, 2010
    Assignee: Intel Corporation
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli, Gennady Farber, Hai-Feng Liu, Hamid Eslampour, Ut Tran, William B. Wong, Ruolin Li, Jesper Arentoft Jayaswal
  • Publication number: 20090226135
    Abstract: Optical components may be precisely positioned in three dimensions with respect to one another. A bonder which has the ability to precisely position the components in two dimensions can be utilized. The components may be equipped with contacts at different heights so that as the components come together in a third dimension, their relative positions can be sensed. This information may be fed back to the bonder to control the precise alignment in the third dimension.
    Type: Application
    Filed: May 12, 2009
    Publication date: September 10, 2009
    Inventors: Ut Tran, Hamid Eslampour