Patents by Inventor Uttara Chakraborty

Uttara Chakraborty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11237454
    Abstract: Typically, quantum systems are very sensitive to environmental fluctuations, and diagnosing errors via measurements causes unavoidable perturbations. Here, an in situ frequency-locking technique monitors and corrects frequency variations in single-photon sources based on resonators. By using the classical laser fields used for photon generation as probes to diagnose variations in the resonator frequency, the system applies feedback control to correct photon frequency errors in parallel to the optical quantum computation without disturbing the physical qubit. Our technique can be implemented on a silicon photonic device and with sub 1 pm frequency stabilization in the presence of applied environmental noise, corresponding to a fractional frequency drift of <1% of a photon linewidth. These methods can be used for feedback-controlled quantum state engineering.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: February 1, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacques Johannes Carolan, Uttara Chakraborty, Nicholas C. Harris, Mihir Pant, Dirk Robert Englund
  • Publication number: 20200150511
    Abstract: Typically, quantum systems are very sensitive to environmental fluctuations, and diagnosing errors via measurements causes unavoidable perturbations. Here, an in situ frequency-locking technique monitors and corrects frequency variations in single-photon sources based on resonators. By using the classical laser fields used for photon generation as probes to diagnose variations in the resonator frequency, the system applies feedback control to correct photon frequency errors in parallel to the optical quantum computation without disturbing the physical qubit. Our technique can be implemented on a silicon photonic device and with sub 1 pm frequency stabilization in the presence of applied environmental noise, corresponding to a fractional frequency drift of <1% of a photon linewidth. These methods can be used for feedback-controlled quantum state engineering.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Inventors: Jacques Johannes Carolan, Uttara Chakraborty, Nicholas C. HARRIS, Mihir PANT, Dirk Robert ENGLUND