Patents by Inventor Uwe Bauer

Uwe Bauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827756
    Abstract: Disclosed are free-flowing mixtures comprising a granular material comprising a thermoplastic elastomer, a functionalized thermoplastic elastomer, at least one phase change material bound to the thermoplastic elastomers, and at least one binding agent capable of adsorbing and/or absorbing portions of the phase change material. The binding agent is substantially present between the granulate materials, and either: i) the proportion by weight of the phase change material in the granular material is 60% to 90% and the binding agent is a non-silicate binding agent, or ii) the proportion by weight of the phase change material in the granular material is more than 70% and up to 90%. Also described are various compositions comprising the mixture and methods for producing the mixture.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: November 28, 2023
    Assignee: Smart Advanced Systems GmbH
    Inventor: Ralf-Uwe Bauer
  • Publication number: 20230159711
    Abstract: Disclosed are free-flowing mixtures comprising a granular material comprising a thermoplastic elastomer, a functionalized thermoplastic elastomer, at least one phase change material bound to the thermoplastic elastomers, and at least one binding agent capable of adsorbing and/or absorbing portions of the phase change material. The binding agent is substantially present between the granulate materials, and either: i) the proportion by weight of the phase change material in the granular material is 60% to 90% and the binding agent is a non-silicate binding agent, or ii) the proportion by weight of the phase change material in the granular material is more than 70% and up to 90%. Also described are various compositions comprising the mixture and methods for producing the mixture.
    Type: Application
    Filed: January 20, 2023
    Publication date: May 25, 2023
    Inventor: Ralf-Uwe Bauer
  • Publication number: 20220258240
    Abstract: A method for improving part quality in additive manufacturing involving jetting liquid metal. Limiting the amounts of magnesium and zinc in a meniscus material to below predetermined thresholds improves jetting quality. Further, ensuring an amount of Strontium is above a predetermined threshold further improves jetting of the liquid metal.
    Type: Application
    Filed: February 11, 2022
    Publication date: August 18, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Uwe Bauer, Mark Gibson, Emanuel Sachs, Robert Barbati, Alexander Barbati, Brian Kernan
  • Patent number: 11241741
    Abstract: For conditioning build material for fused filament fabrication, thermal power is both added to and removed from a nozzle in a manner that can reduce sensitivity of the nozzle temperature to fluctuations in build material feed rate. The amount of thermal power added is at least as large as the sum of the amount removed, the amount to condition the material, and losses to the environment. The amount removed may be at least as large as half the thermal power required to condition the material to extrusion temperature, and may be comparable to, or much larger than the conditioning amount. The larger the ratio of the amount removed to the conditioning amount, the less sensitive the nozzle temperature will be to fluctuations in build material feed rate. Fine temperature control arises, enabling building with metal-containing multi-phase materials or other materials that have a narrow working temperature range.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 8, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, Uwe Bauer, Jonah Samuel Myerberg, Nicholas Graham Bandiera
  • Patent number: 10974299
    Abstract: 3D printing using certain materials, such as metal containing multi-phase materials can be prone to clogs and other flow interruptions. Providing build material according to feed rate profiles having varying rates can mitigate these problems. Each feed rate profile can be broken up into blocks of time, some of which relate to fabricating the exterior geometry of the object. Each block of time can be represented by a FFT. The blocks that relate to the exterior are represented by a FFT that has significant high frequency content of 1 Hz or greater. It is beneficial to use profiles including feed rates outside of a range of feed rates suitable for steady state extrusion, being either higher or lower rates than the range limits. A combination of feed rate profiles based only on clog and flow interruption mitigation and operational to print the part according to a model can be used.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: April 13, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: Uwe Bauer, Emanuel Michael Sachs, Mark Gardner Gibson, Nicholas Graham Bandiera
  • Patent number: 10905645
    Abstract: Methods for producing cellulose articles having controlled release of active ingredient include dispersing pulp in aqueous direct solvent for cellulose to form a slurry. Organically modified or ion-exchange-activated phyllosilicate is homogenized in a direct solvent for cellulose with exfoliation by shearing, then mixed with the slurried pulp. A mixture of active ingredient and a lipophilic matrix material or a water-in-oil (“W/O”) emulsion containing active ingredient is stabilized with thickener, converted into a gel-like paste, and mixed with the slurried pulp. Water is stripped from the mixture until all cellulose is dissolved, the mixture is formed into shaped articles, and dried. Exemplary active ingredients include cosmetic active ingredients, fat-soluble vitamins or apolar plant extracts. Domains of active ingredient and matrix material or emulsion containing active ingredient are present as fine divisions within the inventive articles.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: February 2, 2021
    Assignee: smartpolymer GmbH
    Inventors: Ralf-Uwe Bauer, Frank Meister, Michael Mooz, Markus Krieg, Sabine Riede
  • Patent number: 10468164
    Abstract: The invention describes electrically conductive shaped bodies with an inherent positive temperature coefficient (PTC), produced from a composition which contains at least one organic matrix polymer (compound component A), at least one submicroscale or nanoscale, electrically conductive additive (compound component B) and at least one phase-change material with a phase-transition temperature in the range from ?42° C. to +150° C. (compound component D). The phase-change material is incorporated into an organic network (compound component C). The electrically conductive shaped body with an inherent PTC effect is, in particular, a filament, a fibre, a spun-bonded web, a foam, a film, a foil or an injection-moulded article. The switching point for the PTC behavior is dependent on the type and also the phase-conversion temperature of the phase-change material. By way of example, a self-regulating surface heater in the form of a film, foil and/or textile can be realized in this way.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: November 5, 2019
    Assignee: THUERINGISCHES INSTITUT FUER TEXTIL-UND KUNSTSTOFF-FORSCHUNG E.V.
    Inventors: Klaus Heinemann, Ralf-Uwe Bauer, Thomas Welzel, Mario Schrödner, Frank Schubert, Sabine Riede
  • Patent number: 10460804
    Abstract: Systems, methods, and apparatus are provided for tuning a memristive property of a device. The device (500) includes a layer of a dielectric material (507) disposed over and forming an interface with a layer of an electrically conductive material (506), and a gate electrode (508) disposed over the dielectric material. The dielectric material layer includes at least one ionic species (302) having a high ion mobility. The electrically conductive material is configured such that a potential difference applied to the device can cause the at least one ionic species to migrate reversibly across the interface into or out of the electrically conductive material layer, to modify the resistive state of the electrically conductive material layer.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: October 29, 2019
    Assignee: Massachusetts Institute of technology
    Inventors: Uwe Bauer, Geoffrey S. D. Beach
  • Patent number: 10443153
    Abstract: The invention relates to molded cellulose bodies, in particular fibers, filaments, directly spun nonwovens, films, or foams which have flame-resistant properties. The fibers and filaments can be further processed as textiles into yarns, wovens, knitted fabrics, and nonwovens. The molded bodies are produced from solutions of cellulose and melamine cyanurate or cellulose and crosslinked or partially crosslinked melamine resin particles in an organic solvent. The melamine cyanurate or the melamine resin particles provide the molded cellulose bodies with flame-retardant properties. The molded cellulose bodies made of cellulose and melamine cyanurate or melamine resin particles can further contain flame retardants, in particular flame retardants which act synergistically, in a particulate form. The obtained textile fibers and nonwoven materials have a soft touch and can be processed or finished as filaments or yarns on conventional textile machines.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: October 15, 2019
    Assignee: smartpolymer GmbH
    Inventors: Frank-Günter Niemz, Marcus Krieg, Michael Mooz, Ralf-Uwe Bauer, Sabine Riede
  • Publication number: 20190237224
    Abstract: The invention describes electrically conductive shaped bodies with an inherent positive temperature coefficient (PTC), produced from a composition which contains at lest one organic matrix polymer (compound component A), at least one submicroscale or nanoscale, electrically conductive additive (compound component B) and at least one phase-change material with a phase-transition temperature in the range from ?42° C. to +150° C. (compound component D). The phase-change material is incorporated into an organic network (compound component C). The electrically conductive shaped body with an inherent PTC effect is, in particular, a filament, a fibre, a spun-bonded web, a foam, a film, a foil or an injection-moulded article. The switching point for the PTC behavior is dependent on the type and also the phase-conversion temperature of the phase-change material. By way of example, a self-regulating surface heater in the form of a film, foil and/or textile can be realized in this way.
    Type: Application
    Filed: June 22, 2017
    Publication date: August 1, 2019
    Inventors: Klaus HEINEMANN, Ralf-Uwe BAUER, Thomas WELZEL, Mario SCHRÖDNER, Frank SCHUBERT, Sabine RIEDE
  • Publication number: 20190168301
    Abstract: Fused filament fabrication using metal based multi-phase (MBMP) build materials, creates a build with object portions and support portions adhered to each other that must be separated. Different object portions are more delicate or problematic than others. Methods for tuning or specifying the strength of adhesion at interfaces between such object and support portions include providing a release skin of powder or other material at such interfaces. Strength of adhesion also varies based on the liquid fraction of material deposited to form interfaces, generally with relatively higher liquid fraction leading to stronger adhesion. Liquid fraction is governed by MBMP material composition and temperature at deposition. Strength can be tuned by printing interfaces of the same material at different temperatures, or different materials at the same or different temperatures. Support portions may be entirely of weaker adhesion. Joining portions may separate with object or support.
    Type: Application
    Filed: October 19, 2018
    Publication date: June 6, 2019
    Inventors: Nicholas Graham Bandiera, Uwe Bauer, Emanuel Michael Sachs
  • Publication number: 20190118252
    Abstract: A nozzle for extruding metal containing multi phase (MCMP) build material is heated by an induction coil. The nozzle effective radius is larger than an induction skin depth in the nozzle, which is larger than 1/15 the radius, and less than the nozzle length. The nozzle material performance index, based on resistivity and magnetic permeability, is higher than that of the build material, and components of a build platform, particularly a removable sheet. The coil radius is less than 1.4 times the nozzle effective radius. The nozzle may be of several annular sections, of which that of the bore may be removable and wear resistant. The nozzle may be of multiple graphite grades, including copper infused. The coil axial extent may be less than the nozzle length, and it may be located nearer to the outlet. An adhesion control layer on a build sheet may enhance or reduce adhesion thereto.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 25, 2019
    Inventors: Uwe Bauer, Nicholas Graham Bandiera, Emanuel Michael Sachs
  • Publication number: 20190118258
    Abstract: 3D printing using metal containing multi phase materials is prone to nozzle clogging and flow artifacts. These can be mitigated by monitoring process conditions and taking action at times based on other conditions. Forces, physical regularity, and temperatures can be monitored and service can be taken based on these, immediately, or at dynamic future points, short or longer term, such as completion of a segment or layer, or before critical geometry. Process conditions can be logged and service time can be based on functions of individual and combinations of logged data. Operating windows can be adjusted based on same. Service includes dwell time at high and low temperatures, treatment material provided into the nozzle to change the liquid composition therein. Plungers and fluid jets can expel material from nozzle inlet or outlet. Dwelling at various temperatures can liquefy clogs or cause rupture by disparate volume changes of cooling materials.
    Type: Application
    Filed: September 7, 2018
    Publication date: April 25, 2019
    Inventors: Emanuel Michael Sachs, Uwe Bauer, Nicholas Graham Bandiera, Mark Gardner Gibson
  • Publication number: 20190030602
    Abstract: For conditioning build material for fused filament fabrication, thermal power is both added to and removed from a nozzle in a manner that can reduce sensitivity of the nozzle temperature to fluctuations in build material feed rate. The amount of thermal power added is at least as large as the sum of the amount removed, the amount to condition the material, and losses to the environment. The amount removed may be at least as large as half the thermal power required to condition the material to extrusion temperature, and may be comparable to, or much larger than the conditioning amount. The larger the ratio of the amount removed to the conditioning amount, the less sensitive the nozzle temperature will be to fluctuations in build material feed rate. Fine temperature control arises, enabling building with metal-containing multi-phase materials or other materials that have a narrow working temperature range.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 31, 2019
    Inventors: Emanuel Michael Sachs, Uwe Bauer, Jonah Samuel Myerberg, Nicholas Graham Bandiera
  • Publication number: 20190022725
    Abstract: 3D printing using certain materials, such as metal containing multi-phase materials can be prone to clogs and other flow interruptions. Providing build material according to feed rate profiles having varying rates can mitigate these problems. Each feed rate profile can be broken up into blocks of time, some of which relate to fabricating the exterior geometry of the object. Each block of time can be represented by a FFT. The blocks that relate to the exterior are represented by a FFT that has significant high frequency content of 1 Hz or greater. It is beneficial to use profiles including feed rates outside of a range of feed rates suitable for steady state extrusion, being either higher or lower rates than the range limits. A combination of feed rate profiles based only on clog and flow interruption mitigation and operational to print the part according to a model can be used.
    Type: Application
    Filed: July 17, 2018
    Publication date: January 24, 2019
    Inventors: Uwe Bauer, Emanuel Michael Sachs, Mark Gardner Gibson, Nicholas Graham Bandiera
  • Publication number: 20180245635
    Abstract: A rheometer has a shaft, which is supported rotatably in a gas bearing. The gas bearing has a first bearing element (rotor) attached to the shaft and a second bearing element (stator) that surrounds the first bearing element (rotor) with a distance between the two, forming a bearing gap. At least sections of the second bearing element (stator) are made from a gas-permeable material, and gas is passed through them in such manner that a gas cushion is formed in the bearing gap, by which the first bearing element (rotor) and the shaft are supported without direct contact between the two. It is provided that the first bearing element (rotor) is also made from a gas-permeable material, at least in the areas that face the second bearing element (stator), and which the gas penetrates and forms a preferably static gaseous layer close to the surface as a result of the dynamic pressure or backpressure of the gas.
    Type: Application
    Filed: August 11, 2016
    Publication date: August 30, 2018
    Inventors: Wolfgang PLATZEK, Uwe BAUER
  • Patent number: 10053577
    Abstract: The invention molecularly equips polyester or polyolefin molding compositions in situ with zinc ions before extrusion, enabling direct processing of the molding compositions from the melt even at high temperatures and ensuring a long-term antibacterial action. The inventive molding compositions include at least one polyester polymer or polyolefin polymer and at least one zinc salt-organoligand complex.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: August 21, 2018
    Assignee: THUERINGISCHES INSTITUT FUER TEXTIL-UND KUNSTSTOFF-FORSCHUNG E.V.
    Inventors: Rüdiger Strubl, Klaus Heinemann, Frank Schubert, Ralf-Uwe Bauer, Sabine Riede
  • Publication number: 20180108412
    Abstract: Systems, methods, and apparatus are provided for tuning a memristive property of a device. The device (500) includes a layer of a dielectric material (507) disposed over and forming an interface with a layer of an electrically conductive material (506), and a gate electrode (508) disposed over the dielectric material. The dielectric material layer includes at least one ionic species (302) having a high ion mobility. The electrically conductive material is configured such that a potential difference applied to the device can cause the at least one ionic species to migrate reversibly across the interface into or out of the electrically conductive material layer, to modify the resistive state of the electrically conductive material layer.
    Type: Application
    Filed: September 11, 2015
    Publication date: April 19, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Uwe Bauer, Geoffrey S.D. Beach
  • Publication number: 20170349745
    Abstract: The invention molecularly equips polyester or polyolefin molding compositions in situ with zinc ions before extrusion, enabling direct processing of the molding compositions from the melt even at high temperatures and ensuring a long-term antibacterial action. The inventive molding compositions include at least one polyester polymer or polyolefin polymer and at least one zinc salt-organoligand complex.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 7, 2017
    Inventors: Rüdiger STRUBL, Klaus HEINEMANN, Frank SCHUBERT, Ralf-Uwe BAUER, Sabine RIEDE
  • Publication number: 20170333331
    Abstract: Methods for producing cellulose articles having controlled release of active ingredient include dispersing pulp in aqueous direct solvent for cellulose to form a slurry. Organically modified or ion-exchange-activated phyllosilicate is homogenized in a direct solvent for cellulose with exfoliation by shearing, then mixed with the slurried pulp. A mixture of active ingredient and a lipophilic matrix material or a water-in-oil (“W/O”) emulsion containing active ingredient is stabilized with thickener, converted into a gel-like paste, and mixed with the slurried pulp. Water is stripped from the mixture until all cellulose is dissolved, the mixture is formed into shaped articles, and dried. Exemplary active ingredients include cosmetic active ingredients, fat-soluble vitamins or apolar plant extracts. Domains of active ingredient and matrix material or emulsion containing active ingredient are present as fine divisions within the inventive articles.
    Type: Application
    Filed: December 9, 2015
    Publication date: November 23, 2017
    Inventors: Ralf-Uwe BAUER, Frank MEISTER, Michael MOOZ, Markus KRIEG, Sabine RIEDE