Patents by Inventor Uwe Erb

Uwe Erb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9303322
    Abstract: Articles containing fine-grained and/or amorphous metallic coatings/layers on at least part of their exposed surfaces are imprinted with surface structures to raise the contact angle for water in the imprinted areas at room temperature by equal to or greater than 10°, when compared to the flat and smooth metallic material surface of the same composition.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: April 5, 2016
    Assignee: Integran Technologies Inc.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini
  • Publication number: 20150111673
    Abstract: The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight sporting goods exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 23, 2015
    Applicant: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nasarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha, Diana Facchini, Jared Victor, Uwe Erb
  • Patent number: 8906515
    Abstract: Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: December 9, 2014
    Assignee: Integran Technologies, Inc.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nagarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha, Diana Facchini, Jared J. Victor, Uwe Erb
  • Patent number: 8784713
    Abstract: Super-hydrophobic and self-cleaning articles produced by imprinting exposed surfaces with suitable fine-grained and/or amorphous metallic embossing dies to transfer a dual surface structure, including ultra-fine features less than or equal to 100 nm embedded in and overlaying a surface topography with macro-surface structures greater than or equal to 1 micron are disclosed.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: July 22, 2014
    Assignee: Integran Technologies Inc.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini, Mioara Neacsu
  • Publication number: 20130337288
    Abstract: Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness Cr coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial and hydrophobic properties.
    Type: Application
    Filed: August 26, 2013
    Publication date: December 19, 2013
    Applicant: Integran Technologies Inc.
    Inventors: Diana Facchini, Francisco Gonzalez, Jonathan McCrea, Mike Uetz, Gino Palumbo, Klaus Tomantschger, Nandakumar Nagarajan, Jared J. Victor, Uwe Erb
  • Publication number: 20130256944
    Abstract: Super-hydrophobic and self-cleaning articles produced by imprinting exposed surfaces with suitable fine-grained and/or amorphous metallic embossing dies to transfer a dual surface structure, including ultra-fine features less than or equal to 100 nm embedded in and overlaying a surface topography with macro-surface structures greater than or equal to 1 micron are disclosed.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Applicant: Integran Technologies Inc.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini, Mioara Neacsu
  • Patent number: 8545994
    Abstract: An article includes an electrodeposited metallic material including Co with a minimum content of 75% by weight. The metallic material has a microstructure which is fine-grained with an average grain size between 2 and 5,000 nm and/or an amorphous microstructure. The metallic material forms at least part of an exposed surface of the article. The metallic material has an inherent contact angle for water of less than 90 degrees at room temperature when measured on a smooth exposed surface portion of the metallic material which has a maximum surface roughness Ra of 0.25 microns. The metallic material has an exposed patterned surface portion having surface structures having a height of between at least 5 microns to about 100 microns incorporated therein to increase the contact angle for water at room temperature of the exposed patterned surface portion to over 100 degrees.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: October 1, 2013
    Assignee: Integran Technologies Inc.
    Inventors: Diana Facchini, Francisco Gonzalez, Jonathan McCrea, Mike Uetz, Gino Palumbo, Klaus Tomantschger, Nandakumar Nagarajan, Jared J. Victor, Uwe Erb
  • Patent number: 8486319
    Abstract: Super-hydrophobic and self-cleaning articles produced by imprinting exposed surfaces with suitable fine-grained and/or amorphous metallic embossing dies to transfer a dual surface structure, including ultra-fine features less than or equal to 100 nm embedded in and overlaying a surface topography with macro-surface structures greater than or equal to 1 micron are disclosed.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: July 16, 2013
    Assignee: Integran Technologies Inc.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini, Mioara Neacsu
  • Publication number: 20120121923
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The CTE of the fine-grained metallic coating is matched to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Application
    Filed: January 26, 2012
    Publication date: May 17, 2012
    Applicant: INTEGRAN TECHNOLOGIES INC.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Patent number: 8129034
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: March 6, 2012
    Assignee: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20110294594
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Application
    Filed: August 4, 2011
    Publication date: December 1, 2011
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, Dave Limoges, Uwe Erb
  • Publication number: 20110287223
    Abstract: Articles containing fine-grained and/or amorphous metallic coatings/layers on at least part of their exposed surfaces are imprinted with surface structures to raise the contact angle for water in the imprinted areas at room temperature by equal to or greater than 10°, when compared to the flat and smooth metallic material surface of the same composition.
    Type: Application
    Filed: May 24, 2010
    Publication date: November 24, 2011
    Applicant: INTEGRAN TECHNOLOGIES INC.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini
  • Publication number: 20110287203
    Abstract: Super-hydrophobic and self-cleaning articles produced by imprinting exposed surfaces with suitable fine-grained and/or amorphous metallic embossing dies to transfer a dual surface structure, including ultra-fine features less than or equal to 100 nm embedded in and overlaying a surface topography with macro-surface structures greater than or equal to 1 micron are disclosed.
    Type: Application
    Filed: May 24, 2010
    Publication date: November 24, 2011
    Applicant: INTEGRAN TECHNOLOGIES INC.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini, Mioara Neacsu
  • Patent number: 8025979
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: September 27, 2011
    Assignee: Integran Technologies Inc.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, Dave Limoges, Uwe Erb
  • Publication number: 20110143159
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Application
    Filed: February 11, 2011
    Publication date: June 16, 2011
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Patent number: 7910224
    Abstract: Fine-gained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Fetch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: March 22, 2011
    Assignee: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20110014488
    Abstract: Fine-gained (average grain size 1 mm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Fetch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20110003171
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Application
    Filed: August 12, 2010
    Publication date: January 6, 2011
    Applicant: Integran Technologies Inc.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantshger, Jonathan McCrea, David Limoges, Uwe Erb
  • Publication number: 20100304065
    Abstract: Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
    Type: Application
    Filed: May 24, 2010
    Publication date: December 2, 2010
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nagarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha, Diana Facchini, Jared J. Victor, Uwe Erb
  • Publication number: 20100304179
    Abstract: Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness Cr coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial and hydrophobic properties.
    Type: Application
    Filed: May 24, 2010
    Publication date: December 2, 2010
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Diana Facchini, Francisco Gonzalez, Jonathan McCrea, Mike Uetz, Gino Palumbo, Klaus Tomantschger, Nandakumar Nagarajan, Jared J. Victor, Uwe Erb