Patents by Inventor Uwe Hodel
Uwe Hodel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12034085Abstract: A variable capacitance III-N device having multiple two-dimensional electron gas (2DEG) layers are described. In some embodiments, the device comprises a first source and a first drain; a first polarization layer adjacent to the first source and the first drain; a first channel layer coupled to the first source and the first drain and adjacent to the first polarization layer, the first channel layer comprising a first 2DEG region; a second source and a second drain; a second polarization layer adjacent to the second source and the second drain; and a second channel layer coupled to the second source and the second drain and adjacent to the second polarization layer, the second channel layer comprising a second 2DEG region, wherein the second channel layer is over the first polarization layer.Type: GrantFiled: June 23, 2022Date of Patent: July 9, 2024Assignee: Intel CorporationInventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
-
Publication number: 20230252214Abstract: Methods for providing fill patterns for IC devices are disclosed. An example method includes detecting a first device and a second device in an image, e.g., a two- or three-dimensional image representing the IC device. A line is defined based on the devices. The line divides the image into a first section and a second section. A first structure is generated based on the first device. A second structure is generated based on the second device. The second structure is a mirror image of the first structure across the line. A first fill pattern is generated in the first section based on the first structure. A second fill pattern is generated in the second section based on the first fill pattern, e.g., through a reflection transformation of the first fill pattern across the line. The two fill patterns represent patterns of fill structures to be included in the IC device.Type: ApplicationFiled: February 8, 2022Publication date: August 10, 2023Inventors: Richard Hudeczek, Carla Moran Guizan, Peter Baumgartner, Richard Geiger, Alexander Bechtold, Uwe Hodel, Walther Lutz, Georgios Panagopoulos, Johannes Xaver Rauh, Roshini Sachithanandan
-
Publication number: 20230197598Abstract: IC devices including inductors or transformers formed based on BPRs are disclosed. An example IC device includes semiconductor structures of one or more transistors, an electrically conductive layer, a support structure comprising a semiconductor material, and an inductor. The inductor includes an electrical conductor constituted by a power rail buried in the support structure. The inductor also includes a magnetic core coupled to the electrical conductor. The magnetic core includes magnetic rails buried in the support structure, magnetic TSVs buried in the support structure, and a magnetic plate at the backside of the support structure. The magnetic core includes a magnetic material, such as Fe, NiFe, CoZrTa, etc. In some embodiments, the IC device includes another power rail that is buried in the support structure and constitutes another electrical conductor coupled to the magnetic core. The two power rails and magnetic core can constitute a transformer.Type: ApplicationFiled: December 17, 2021Publication date: June 22, 2023Applicant: Intel CorporationInventors: Georgios Panagopoulos, Richard Geiger, Peter Baumgartner, Harald Gossner, Uwe Hodel, Michael Langenbuch, Johannes Xaver Rauh, Alexander Bechtold, Richard Hudeczek, Carla Moran Guizan
-
Publication number: 20230197527Abstract: IC devices including semiconductor devices isolated by BSRs are disclosed. An example IC device includes a first and a second semiconductor devices, a support structure, and a BSR. The BSR defines boundaries of a first and second section in the support structure. At least a portion of the first semiconductor device is in the first section, and at least a portion of the second semiconductor device is in the second section. The first semiconductor device is isolated from the second semiconductor device by the BSR. Signals from the first semiconductor device would not be transmitted to the second semiconductor device through the support structure. The BSR may be connected to a TSV or be biased. The IC device may include additional BSRs to isolate the first and second semiconductor devices. An BSR may be a power rail used for delivering power.Type: ApplicationFiled: December 17, 2021Publication date: June 22, 2023Applicant: Intel CorporationInventors: Richard Geiger, Peter Baumgartner, Alexander Bechtold, Uwe Hodel, Richard Hudeczek, Walther Lutz, Carla Moran Guizan, Georgios Panagopoulos, Johannes Xaver Rauh, Roshini Sachithanandan
-
Publication number: 20230187313Abstract: IC devices including transmission lines are disclosed. An example IC device includes two electrically conductive layers (first and second layers) and a support structure between the two electrically conductive layers. The first layer is coupled to transistors over or at least partially in the support structure. A shield of a transmission is placed in the first layer. Conductors of the transmission line are placed in the second layer and are coupled to the first layer by TSVs. Another example IC device includes three electrically conductive layers (first, second, and third layers). The first layer is coupled to transistors over or at least partially in the support structure. A shield of a transmission line is placed in the second layer and conductors of the transmission line are placed in the third layer. The conductors are coupled to the first layer by TSVs and coupled to the second layer by vias.Type: ApplicationFiled: December 14, 2021Publication date: June 15, 2023Applicant: Intel CorporationInventors: Carla Moran Guizan, Peter Baumgartner, Richard Geiger, Alexander Bechtold, Uwe Hodel, Richard Hudeczek, Walther Lutz, Georgios Panagopoulos, Johannes Xaver Rauh, Roshini Sachithanandan
-
Patent number: 11545586Abstract: A Group III-Nitride (III-N) device structure is provided which comprises: a heterostructure having three or more layers comprising III-N material, an anode within a recess that extends through two or more of the layers, wherein the anode is in electrical contact with the first layer, a cathode comprising donor dopants, wherein the cathode is on the first layer of the heterostructure; and a conducting region in the first layer in direct contact to the cathode and conductively connected to the anode. Other embodiments are also disclosed and claimed.Type: GrantFiled: September 29, 2017Date of Patent: January 3, 2023Assignee: Intel CorporationInventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
-
Publication number: 20220320350Abstract: A variable capacitance III-N device having multiple two-dimensional electron gas (2DEG) layers are described. In some embodiments, the device comprises a first source and a first drain; a first polarization layer adjacent to the first source and the first drain; a first channel layer coupled to the first source and the first drain and adjacent to the first polarization layer, the first channel layer comprising a first 2DEG region; a second source and a second drain; a second polarization layer adjacent to the second source and the second drain; and a second channel layer coupled to the second source and the second drain and adjacent to the second polarization layer, the second channel layer comprising a second 2DEG region, wherein the second channel layer is over the first polarization layer.Type: ApplicationFiled: June 23, 2022Publication date: October 6, 2022Applicant: Intel CorporationInventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
-
Patent number: 11424354Abstract: A Group III-Nitride (III-N) device structure is provided comprising: a heterostructure having three or more layers comprising III-N material, an anode n+ region and a cathode comprising donor dopants, wherein the anode n+ region and the cathode are on the first layer of the heterostructure and wherein the anode n+ region and the cathode extend beyond the heterostructure, and an anode metal region within a recess that extends through two or more of the layers, wherein the anode metal region is in electrical contact with the first layer, wherein the anode metal region comprises a first width within the recess and a second width beyond the recess, and wherein the anode metal region is coupled with the anode n+ region. Other embodiments are also disclosed and claimed.Type: GrantFiled: September 29, 2017Date of Patent: August 23, 2022Assignee: Intel CorporationInventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger
-
Patent number: 11380806Abstract: A variable capacitance III-N device having multiple two-dimensional electron gas (2DEG) layers are described. In some embodiments, the device comprises a first source and a first drain; a first polarization layer adjacent to the first source and the first drain; a first channel layer coupled to the first source and the first drain and adjacent to the first polarization layer, the first channel layer comprising a first 2DEG region; a second source and a second drain; a second polarization layer adjacent to the second source and the second drain; and a second channel layer coupled to the second source and the second drain and adjacent to the second polarization layer, the second channel layer comprising a second 2DEG region, wherein the second channel layer is over the first polarization layer.Type: GrantFiled: September 28, 2017Date of Patent: July 5, 2022Assignee: Intel CorporationInventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
-
Patent number: 11373995Abstract: A Group III-Nitride (III-N) device structure is presented comprising: a heterostructure having three or more layers comprising III-N material, a cathode comprising donor dopants, wherein the cathode is on a first layer of the heterostructure, an anode within a recess that extends through two or more of the layers of the heterostructure, wherein the anode comprises a first region wherein the anode is separated from the heterostructure by a high k dielectric material, and a second region wherein the anode is in direct contact with the heterostructure, and a conducting region in the first layer in direct contact to the cathode and conductively connected to the anode. Other embodiments are also disclosed and claimed.Type: GrantFiled: September 29, 2017Date of Patent: June 28, 2022Assignee: Intel CorporationInventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
-
Patent number: 11024712Abstract: A semiconductor device is proposed. The semiconductor device includes a source region of a field effect transistor having a first conductivity type, a body region of the field effect transistor having a second conductivity type, and a drain region of the field effect transistor having the first conductivity type. The source region, the drain region, and the body region are located in a semiconductor substrate of the semiconductor device and the body region is located between the source region and the drain region. The drain region extends from the body region through a buried portion of the drain region to a drain contact portion of the drain region located at a surface of the semiconductor substrate, the buried portion of the drain region is located beneath a spacer doping region, and the spacer doping region is located within the semiconductor substrate.Type: GrantFiled: June 27, 2018Date of Patent: June 1, 2021Assignee: Intel IP CorporationInventors: Vase Jovanov, Peter Baumgartner, Gregor Bracher, Luis Giles, Uwe Hodel, Andreas Lachmann, Philipp Riess, Karl-Henrik Ryden
-
Publication number: 20200411505Abstract: A Group III-Nitride (III-N) device structure is presented comprising: a heterostructure having three or more layers comprising material, a cathode comprising donor dopants, wherein the cathode is on a first layer of the heterostructure, an anode within a recess that extends through two or more of the layers of the heterostructure, wherein the anode comprises a first region wherein the anode is separated from the heterostructure by a high k dielectric material, and a second region wherein the anode is in direct contact with the heterostructure, and a conducting region in the first layer in direct contact to the cathode and conductively connected to the anode. Other embodiments are also disclosed and claimed.Type: ApplicationFiled: September 29, 2017Publication date: December 31, 2020Applicant: INTEL CORPORATIONInventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
-
Publication number: 20200411699Abstract: A Group III-Nitride (III-N) device structure is provided which comprises: a heterostructure having three or more layers comprising III-N material, an anode within a recess that extends through two or more of the layers, wherein the anode is in electrical contact with the first layer, a cathode comprising donor dopants, wherein the cathode is on the first layer of the heterostructure; and a conducting region in the first layer in direct contact to the cathode and conductively connected to the anode. Other embodiments are also disclosed and claimed.Type: ApplicationFiled: September 29, 2017Publication date: December 31, 2020Applicant: INTEL CORPORATIONInventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
-
Publication number: 20200220030Abstract: A variable capacitance III-N device having multiple two-dimensional electron gas (2DEG) layers are described. In some embodiments, the device comprises a first source and a first drain; a first polarization layer adjacent to the first source and the first drain; a first channel layer coupled to the first source and the first drain and adjacent to the first polarization layer, the first channel layer comprising a first 2DEG region; a second source and a second drain; a second polarization layer adjacent to the second source and the second drain; and a second channel layer coupled to the second source and the second drain and adjacent to the second polarization layer, the second channel layer comprising a second 2DEG region, wherein the second channel layer is over the first polarization layer.Type: ApplicationFiled: September 28, 2017Publication date: July 9, 2020Applicant: INTEL CORPORATIONInventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
-
Publication number: 20200203518Abstract: A Group III-Nitride (III-N) device structure is provided comprising: a heterostructure having three or more layers comprising III-N material, an anode n+ region and a cathode comprising donor dopants, wherein the anode n+ region and the cathode are on the first layer of the heterostructure and wherein the anode n+ region and the cathode extend beyond the heterostructure, and an anode metal region within a recess that extends through two or more of the layers, wherein the anode metal region is in electrical contact with the first layer, wherein the anode metal region comprises a first width within the recess and a second width beyond the recess, and wherein the anode metal region is coupled with the anode n+ region. Other embodiments are also disclosed and claimed.Type: ApplicationFiled: September 29, 2017Publication date: June 25, 2020Applicant: Santa ClaraInventors: Harald Gossner, Peter Baumgartner, Uwe Hodel, Domagoj Siprak, Stephan Leuschner, Richard Geiger
-
Publication number: 20200006483Abstract: A semiconductor device is proposed. The semiconductor device includes a source region of a field effect transistor having a first conductivity type, a body region of the field effect transistor having a second conductivity type, and a drain region of the field effect transistor having the first conductivity type. The source region, the drain region, and the body region are located in a semiconductor substrate of the semiconductor device and the body region is located between the source region and the drain region. The drain region extends from the body region through a buried portion of the drain region to a drain contact portion of the drain region located at a surface of the semiconductor substrate, the buried portion of the drain region is located beneath a spacer doping region, and the spacer doping region is located within the semiconductor substrate.Type: ApplicationFiled: June 27, 2018Publication date: January 2, 2020Inventors: Vase JOVANOV, Peter BAUMGARTNER, Gregor BRACHER, Luis GILES, Uwe HODEL, Andreas LACHMANN, Philipp RIESS, Karl-Henrik RYDEN
-
Publication number: 20170278757Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes an array having at least one first region and at least one second region. The first region includes at least one first device oriented in a first direction. The second region includes at least one second device oriented in a second direction. The second direction is different than the first direction.Type: ApplicationFiled: June 9, 2017Publication date: September 28, 2017Inventors: Uwe Hodel, Andreas Martin, Wolfgang Heinrigs
-
Patent number: 9704756Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a semiconductor device includes an array having at least one first region and at least one second region. The at least one first region includes at least one first device oriented in a first direction. The at least one second region includes at least one second device oriented in a second direction. The second direction is different than the first direction.Type: GrantFiled: May 11, 2015Date of Patent: July 11, 2017Assignee: Infineon Technologies AGInventors: Uwe Hodel, Andreas Martin, Wolfgang Heinrigs
-
Patent number: 9583595Abstract: Disclosed herein are Lateral Diffused Metal Oxide Semiconductor (LDMOS) device and trench isolation related devices, methods, and techniques. In one illustration, a doped region is formed within a semiconductor substrate. A trench isolation region is formed within the doped region. The doped region and the trench isolation region are part of a Lateral Diffused Metal Oxide Semiconductor (LDMOS) device. The trench isolation region or an interface between the trench isolation region and the doped region is configured to reduce low frequency noise in the LDMOS device.Type: GrantFiled: September 2, 2015Date of Patent: February 28, 2017Assignee: Infineon Technologies AGInventors: Giovanni Calabrese, Domagoj Siprak, Wolfgang Molzer, Uwe Hodel
-
Publication number: 20150380522Abstract: Disclosed herein are Lateral Diffused Metal Oxide Semiconductor (LDMOS) device and trench isolation related devices, methods, and techniques. In one illustration, a doped region is formed within a semiconductor substrate. A trench isolation region is formed within the doped region. The doped region and the trench isolation region are part of a Lateral Diffused Metal Oxide Semiconductor (LDMOS) device. The trench isolation region or an interface between the trench isolation region and the doped region is configured to reduce low frequency noise in the LDMOS device.Type: ApplicationFiled: September 2, 2015Publication date: December 31, 2015Inventors: Giovanni Calabrese, Domagoj Siprak, Wolfgang Molzer, Uwe Hodel