Patents by Inventor Uwe Wiedmann

Uwe Wiedmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240122777
    Abstract: Systems are provided for an imaging system isolation enclosure for use with a medical imaging system includes a pathogen impermeable enclosure for use with one or more of radiation imaging systems and magnetic resonance imaging systems, the pathogen impermeable enclosure is configured to provide a barrier between the imaging system and at least one of a patient user and an imaging room, and an air filtration system including an inlet to supply a cooling air flow to an interior of the imaging system isolation enclosure and an outlet to output exhaust air from an interior of the imaging system isolation enclosure.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 18, 2024
    Inventors: Paul Francis FitzGerald, Uwe Wiedmann, Ross Christopher Stalter, Stephen Lorenco Araujo, Michael James Rishel, Chad Allan Smith
  • Publication number: 20240085575
    Abstract: A phase-contrast imaging detector includes a plurality of pixels. Each pixel includes a detection material that generates a measurable parameter in response to X-ray photons. Each pixel also includes a plurality of sub-pixel resolution readout structures. The sub-pixel resolution readout structures are in an alternating pattern with a spacing therebetween that is larger than a frequency of a phase-contrast interference pattern but small enough to enable charge sharing between adjacent sub-pixel resolution readout structures when an X-ray photon hits between the adjacent sub-pixel resolution readout structures. The phase-contrast imaging detector also includes readout circuitry configured to read out signals from the plurality of sub-pixel readout structures. The plurality of sub-pixel resolution readout structures includes two or more electrodes having alternating arms that form an interleaved comb structure.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Uwe Wiedmann, Biju Jacob, Brian David Yanoff
  • Publication number: 20240062983
    Abstract: A system for melting, sintering, or heat treating a material is provided. The system includes a cathode, an anode, and a focus coil assembly having a quadrupole magnet. The quadrupole magnet includes four poles and a yoke. The four poles are spaced apart and surround a beam cavity. Each of the four poles includes a pole face proximate the beam cavity and an end opposite the pole face. The first and third poles are aligned along an x-axis and configured to have a first magnetic polarity at their respective pole faces and a second magnetic polarity opposite the first magnetic polarity at their respective ends. The second and fourth poles are aligned along a y-axis and configured to have the second magnetic polarity at their respective pole faces and the first magnetic polarity at their respective ends. The yoke surrounds the poles and is coupled to the poles.
    Type: Application
    Filed: October 30, 2023
    Publication date: February 22, 2024
    Applicant: General Electric Company
    Inventors: John Scott Price, Ye Bai, Antonio Caiafa, Vasile Bogdan Neculaes, Uwe Wiedmann
  • Patent number: 11860319
    Abstract: A phase-contrast imaging detector includes a plurality of pixels. Each pixel includes a detection material that generates a measurable parameter in response to X-ray photons. Each pixel also includes a plurality of sub-pixel resolution readout structures. The sub-pixel resolution readout structures are in an alternating pattern with a spacing therebetween that is larger than a frequency of a phase-contrast interference pattern but small enough to enable charge sharing between adjacent sub-pixel resolution readout structures when an X-ray photon hits between the adjacent sub-pixel resolution readout structures. The phase-contrast imaging detector also includes readout circuitry configured to read out signals from the plurality of sub-pixel readout structures. The plurality of sub-pixel resolution readout structures includes two or more electrodes having alternating arms that form an interleaved comb structure.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: January 2, 2024
    Assignee: GE Precision Healthcare LLC
    Inventors: Uwe Wiedmann, Biju Jacob, Brian David Yanoff
  • Patent number: 11841758
    Abstract: A system comprising a processor configured to obtain a feature set for a component and generate random trees based on the feature set and a training data set, wherein each of the random trees can include at least one predictive value representing a probability of a feature of the random trees indicating a failure of the component within a period of time. The processor can also select a subset of the random trees based on the at least one predictive value, determine a likelihood of the failure of the component based on operational data for one or more devices and the subset of the random trees, and transmit an explanation to a remote device for the likelihood of failure of the component by indicating the feature selected from the subset of the random trees.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: December 12, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Harsha Aeron, Steven James Huff, Uwe Wiedmann, Bulent Alpay, Karim Choukri
  • Patent number: 11837428
    Abstract: A system for melting, sintering, or heat treating a material is provided. The system includes a cathode, an anode, and a focus coil assembly having a quadrupole magnet. The quadrupole magnet includes four poles and a yoke. The four poles are spaced apart and surround a beam cavity. Each of the four poles includes a pole face proximate the beam cavity and an end opposite the pole face. The first and third poles are aligned along an x-axis and configured to have a first magnetic polarity at their respective pole faces and a second magnetic polarity opposite the first magnetic polarity at their respective ends. The second and fourth poles are aligned along a y-axis and configured to have the second magnetic polarity at their respective pole faces and the first magnetic polarity at their respective ends. The yoke surrounds the poles and is coupled to the poles.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: December 5, 2023
    Assignee: General Electric Company
    Inventors: John Scott Price, Ye Bai, Antonio Caiafa, Vasile Bogdan Neculaes, Uwe Wiedmann
  • Publication number: 20230375759
    Abstract: A method for forming a multi-layered, stacked grid structure includes aligning a first grid structure with a second grid structure, wherein both the first grid structure and the second grid structure each include a substrate in which a plurality of trenches are formed and a cured carrier fluid disposed within the plurality of trenches, and wherein a plurality of nano-particles are suspended within the cured carrier fluid. The method also includes, upon aligning the first grid structure and the second grid structure so that their respective plurality of trenches are aligned in the same orientation, joining the first grid structure and the second grid structure together to form the multi-layered, stacked grid structure.
    Type: Application
    Filed: May 18, 2022
    Publication date: November 23, 2023
    Inventors: Shubhodeep Goswami, Bruno Kristiaan Bernard De Man, Uwe Wiedmann, Charles Alexander Szymanski
  • Publication number: 20230320686
    Abstract: Methods and systems are provided for increasing a quality of computed tomography (CT) images generated by a CT system by altering a shape of a focal spot of an X-ray emitter of the CT system. In one embodiment, a method comprises controlling the CT system to focus a beam of electrons generated by a cathode of the CT system at a plurality of focal spots on a surface of an target of the CT system; generating a composite focal spot from the plurality of focal spots; and obtaining projection data of the CT system with the composite focal spot. For example, two focal spots may be combined to generate the composite focal spot. By combining focal spots to generate composite focal spots, a quality of a resulting view produced by the CT system may be increased.
    Type: Application
    Filed: April 11, 2022
    Publication date: October 12, 2023
    Inventors: Jean-Baptiste Thibault, Michael J. Utschig, Ryan J. Lemminger, Sergio Lemaitre, Dominique Poincloux, Uwe Wiedmann
  • Publication number: 20230288580
    Abstract: A phase-contrast imaging detector includes a plurality of pixels. Each pixel includes a detection material that generates a measurable parameter in response to X-ray photons. Each pixel also includes a plurality of sub-pixel resolution readout structures. The sub-pixel resolution readout structures are in an alternating pattern with a spacing therebetween that is larger than a frequency of a phase-contrast interference pattern but small enough to enable charge sharing between adjacent sub-pixel resolution readout structures when an X-ray photon hits between the adjacent sub-pixel resolution readout structures. The phase-contrast imaging detector also includes readout circuitry configured to read out signals from the plurality of sub-pixel readout structures. The plurality of sub-pixel resolution readout structures includes two or more electrodes having alternating arms that form an interleaved comb structure.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 14, 2023
    Inventors: Uwe Wiedmann, Biju Jacob, Brian David Yanoff
  • Publication number: 20230267576
    Abstract: A computer-implemented method for performing dynamic phase correction includes obtaining, at a processor, phase-contrast image data acquired by a photon-counting detector, wherein the photon-counting detector includes a plurality of subareas and each subarea includes a plurality of pixels configured to generate a measurable parameter in response to X-ray photons. The method also includes detecting, via the processor, motion within the phase-contrast image data within a sampling window for multiple subareas of the plurality of subareas. The method further includes estimating, via the processor, motion-correcting parameters for the detected motion within at least one subarea of the multiple subareas. The method still further includes generating, via the processor, a motion-corrected image based on the estimated motion-correcting parameters.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 24, 2023
    Inventor: Uwe Wiedmann
  • Publication number: 20230181399
    Abstract: Systems are provided for a patient isolation unit for use with a medical imaging system includes an enclosure comprised of a pathogen impermeable material compatible with one or more imaging systems. The enclosure includes a base, a first end wall coupled to a first end of the base, a second end wall coupled to a second end of the base, and a cover coupled to a first side of the base, second side of the base, the first end wall and the second end wall for substantially enclosing a patient therein. In another exemplary embodiment, a patient isolation unit for use with a medical imaging system includes a head enclosure comprised of a pathogen impermeable material and a body enclosure coupled to the head enclosure and comprised of a pathogen impermeable material.
    Type: Application
    Filed: April 19, 2021
    Publication date: June 15, 2023
    Inventors: Bruno Kristiaan Bernard De Man, Paul Francis FitzGerald, Stephen Lorenco Araujo, Uwe Wiedmann, Michael James Rishel, Ross Christopher Stalter
  • Publication number: 20230050180
    Abstract: Various systems and methods are provided for a biased cathode assembly of an X-ray tube with improved thermal management and a method of manufacturing same. In one example, a cathode assembly of an X-ray tube comprises an emitter assembly including an emitter coupled to an emitter support structure, and an electrode assembly including an electrode stack and a plurality of bias electrodes. The emitter assembly including a plurality of independent components that are coupled together. The electrode assembly including a plurality of independent components that are coupled together, and the emitter assembly being coupled to the electrode assembly.
    Type: Application
    Filed: October 31, 2022
    Publication date: February 16, 2023
    Inventors: Andrew Thomas Cross, Uwe Wiedmann, Marshall Gordon Jones, Carey Rogers, John Scott Price, Joseph Darryl Michael, Sergio Lemaitre, Fulton Jose Lopez, Vasile Bogdan Neculaes, Steve Buresh, David Wagner
  • Patent number: 11523793
    Abstract: Various methods and systems are provided for an x-ray imaging system. In one example, a method for decelerating a rotor of an x-ray tube of an imaging system includes controlling and/or monitoring a speed and position of the rotor, passing the rotor through a first position where a force exerted on the rotor, is less than Earth's gravitational pull, the force due to a combination of gravity and radial acceleration, and initiating a predefined deceleration profile to decelerate the rotor to a halt when the x-ray tube passes through the first position.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: December 13, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Carey Rogers, Vasile Bogdan Neculaes, Nidhishri Tapadia, Andrew Thomas Cross, Uwe Wiedmann
  • Patent number: 11515117
    Abstract: Various systems and methods are provided for a biased cathode assembly of an X-ray tube with improved thermal management and a method of manufacturing same. In one example, a cathode assembly of an X-ray tube comprises an emitter assembly including an emitter coupled to an emitter support structure, and an electrode assembly including an electrode stack and a plurality of bias electrodes. The emitter assembly including a plurality of independent components that are coupled together. The electrode assembly including a plurality of independent components that are coupled together, and the emitter assembly being coupled to the electrode assembly.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: November 29, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Andrew Thomas Cross, Uwe Wiedmann, Marshall Gordon Jones, Carey Rogers, John Scott Price, Joseph Darryl Michael, Sergio Lemaitre, Fulton Jose Lopez, Vasile Bogdan Neculaes, Steve Buresh, David Wagner
  • Publication number: 20220245482
    Abstract: The present approach relates to generating one or both of a failure prediction indication for an X-ray tube or a remaining useful life estimate for the X-ray tube. In one implementation, a complexity of a regression model is selected based on the operating points utilized by an imaging system for the X-ray tube, where the regression model estimates coefficients utilized by a static tube model in estimating health (e.g., thickness) of the electron emitter of the X-ray tube, which in turn may be used in predicting remaining useful life of an electron emitter of the X-ray tube. In another implementation, replacement of an X-ray tube or a component of a filament drive circuit coupled to the X-ray tube may be detected.
    Type: Application
    Filed: February 2, 2021
    Publication date: August 4, 2022
    Inventors: Munish Vishwas Inamdar, Kiran Panchal, Rui Xu, Uwe Wiedmann
  • Patent number: 11389124
    Abstract: The present disclosure relates to fabrication and use of a phase-contrast imaging detector that includes sub-pixel resolution electrodes or photodiodes spaced to correspond to a phase-contrast interference pattern. A system using such a detector may employ fewer gratings than are typically used in a phase-contrast imaging system, with certain functionality typically provided by a detector-side analyzer grating being performed by sub-pixel resolution structures (e.g., electrodes or photodiodes) of the detector. Measurements acquired using the detector may be used to determine offset, amplitude, and phase of a phase-contrast interference pattern without multiple acquisitions at different phase steps.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: July 19, 2022
    Assignee: General Electric Company
    Inventors: Uwe Wiedmann, Biju Jacob, Peter Michael Edic, Brian David Yanoff
  • Publication number: 20220068585
    Abstract: Various systems and methods are provided for a biased cathode assembly of an X-ray tube with improved thermal management and a method of manufacturing same. In one example, a cathode assembly of an X-ray tube comprises an emitter assembly including an emitter coupled to an emitter support structure, and an electrode assembly including an electrode stack and a plurality of bias electrodes. The emitter assembly including a plurality of independent components that are coupled together. The electrode assembly including a plurality of independent components that are coupled together, and the emitter assembly being coupled to the electrode assembly.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventors: Andrew Thomas Cross, Uwe Wiedmann, Marshall Gordon Jones, Carey Rogers, John Scott Price, Joseph Darryl Michael, Sergio Lemaitre, Fulton Jose Lopez, Vasile Bogdan Neculaes, Steve Buresh, David Wagner
  • Publication number: 20220037105
    Abstract: A system for melting, sintering, or heat treating a material is provided. The system includes a cathode, an anode, and a focus coil assembly having a quadrupole magnet. The quadrupole magnet includes four poles and a yoke. The four poles are spaced apart and surround a beam cavity. Each of the four poles includes a pole face proximate the beam cavity and an end opposite the pole face. The first and third poles are aligned along an x-axis and configured to have a first magnetic polarity at their respective pole faces and a second magnetic polarity opposite the first magnetic polarity at their respective ends. The second and fourth poles are aligned along a y-axis and configured to have the second magnetic polarity at their respective pole faces and the first magnetic polarity at their respective ends. The yoke surrounds the poles and is coupled to the poles.
    Type: Application
    Filed: July 31, 2020
    Publication date: February 3, 2022
    Inventors: John Scott Price, Ye Bai, Antonio Caiafa, Vasile Bogdan Neculaes, Uwe Wiedmann
  • Publication number: 20210345983
    Abstract: Various methods and systems are provided for an x-ray imaging system. In one example, a method for decelerating a rotor of an x-ray tube of an imaging system includes controlling and/or monitoring a speed and position of the rotor, passing the rotor through a first position where a force exerted on the rotor, is less than Earth's gravitational pull, the force due to a combination of gravity and radial acceleration, and initiating a predefined deceleration profile to decelerate the rotor to a halt when the x-ray tube passes through the first position.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 11, 2021
    Inventors: Carey Rogers, Vasile Bogdan Neculaes, Nidhishri Tapadia, Andrew Thomas Cross, Uwe Wiedmann
  • Publication number: 20210350997
    Abstract: An X-ray source includes a target configured to generate X-rays when impacted by an electron beam. The target includes one or more thermally conductive layers; and one or more X-ray generating layers interleaved with the thermally conductive layers, wherein at least one X-ray generating layer comprises regions of X-ray generating material separated by thermally conductive material within the respective X-ray generating layer.
    Type: Application
    Filed: July 22, 2021
    Publication date: November 11, 2021
    Inventors: Yong Liang, Vance Scott Robinson, Uwe Wiedmann