Patents by Inventor Uyigue Omoma Idahosa

Uyigue Omoma Idahosa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8671659
    Abstract: A system and a method of generating energy in a power plant using a turbine are provided. The system includes an air separation unit providing an oxygen output; a plasma generator that is capable of generating plasma; and a combustor configured to receive oxygen and to combust a fuel stream in the presence of the plasma, so as to maintain a stable flame, generating an exhaust gas. The system can further include a water condensation system, fluidly-coupled to the combustor, that is capable of producing a high-content carbon dioxide stream that is substantially free of oxygen. The method of generating energy in a power plant includes the steps of operating an air separation unit to separate oxygen from air, combusting a fuel stream in a combustor in the presence of oxygen, and generating an exhaust gas from the combustion. The exhaust gas can be used in a turbine to generate electricity. A plasma is generated inside the combustor, and a stable flame is maintained in the combustor.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: March 18, 2014
    Assignee: General Electric Company
    Inventors: Ahmed Mostafa ELKady, Uyigue Omoma Idahosa, Matthew Patrick Boespflug, Grover Andrew Bennett, John Thomas Herbon, Hasan Karim, Geoffrey David Myers, Seyed Gholamali Saddoughi
  • Publication number: 20140060069
    Abstract: A combustor including a combustion nozzle. The combustion nozzle includes a mixing section and an exit section. The mixing section includes an air inlet, and a fuel inlet. The exit section includes a plurality of jets on an exit surface. The combustor further includes a combustion zone, including a combustion liner, disposed downstream and in fluidic communication with the combustion nozzle. The combustor is configured wherein a, NOx emission of the combustor is related to 1/R, where R is a Reynolds number ratio of a jet of the plurality of jets to the combustion liner. A method for achieving NOx reduction in a combustion nozzle.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Uyigue Omoma Idahosa, Anthony Robert Brand, Hasan Karim, Michael John Hughes
  • Publication number: 20140000269
    Abstract: A combustion nozzle includes a mixing section and an exit section. The mixing section includes an air inlet, and a fuel inlet. The exit section includes a plurality of jets formed in a predefined pattern on an exit surface. A ratio of a core area of the plurality of jets to an exit surface area is greater than 0.25.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Uyigue Omoma Idahosa, Anthony Robert Brand, Hasan Karim, Michael John Hughes
  • Publication number: 20130283810
    Abstract: A combustion nozzle includes at least one passage having a mixing section and an exit section. The mixing section includes an air inlet, and a fuel inlet. The mixing section has a first length and a first diameter. The exit section has a second length different from the first length, and a second diameter different from the first diameter.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Uyigue Omoma Idahosa, Keith Robert McManus, Anthony Robert Brand, Hasan Karim, Michael John Hughes
  • Publication number: 20130133337
    Abstract: System and methods for hydrogen assisted oxy-fuel combustion are provided. The system includes a combustor, an air separation unit, a fuel stream source, and a condenser. The combustor includes an oxygen input port, a fuel stream input port, a carbon dioxide input port, and an exhaust output port. The air separation unit is in fluid communication with the combustor via the oxygen input port of the combustor. The fuel stream source is in fluid communication with the combustor via the fuel stream input port and includes a fuel source and a hydrogen source. The condenser is disposed to receive an exhaust from the combustor via the exhaust output port and to return an output stream to the combustor via the carbon dioxide input port. The method includes combusting a fuel stream in a combustor in the presence of an oxidizer to generate an exhaust gas.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ahmed Mostafa ELKady, Uyigue Omoma Idahosa
  • Publication number: 20120272655
    Abstract: A system and a method of generating energy in a power plant using a turbine are provided. The system includes an air separation unit providing an oxygen output; a plasma generator that is capable of generating plasma; and a combustor configured to receive oxygen and to combust a fuel stream in the presence of the plasma, so as to maintain a stable flame, generating an exhaust gas. The system can further include a water condensation system, fluidly-coupled to the combustor, that is capable of producing a high-content carbon dioxide stream that is substantially free of oxygen. The method of generating energy in a power plant includes the steps of operating an air separation unit to separate oxygen from air, combusting a fuel stream in a combustor in the presence of oxygen, and generating an exhaust gas from the combustion. The exhaust gas can be used in a turbine to generate electricity. A plasma is generated inside the combustor, and a stable flame is maintained in the combustor.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ahmed Mostafa ELKady, Uyigue Omoma Idahosa, Matthew Patrick Boespflug, Grover Andrew Bennett, John Thomas Herbon, Hasan Karim, Geoffrey David Myers, Seyed Gholamali Saddoughi