Patents by Inventor Vadim A. Kushner

Vadim A. Kushner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973112
    Abstract: A lateral transistor tile is formed with first and second collector regions that longitudinally span first and second sides of the transistor tile; and a base region and an emitter region that are between the first and second collector regions and are both centered on a longitudinal midline of the transistor tile. A base-collector current, a collector-emitter current, and a base-emitter current flow horizontally; and the direction of the base-emitter current is perpendicular to the direction of the base-collector current and the collector-emitter current. Lateral BJT transistors having a variety of layouts are formed from a plurality of the tiles and share common components thereof.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: April 30, 2024
    Assignee: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Publication number: 20230124961
    Abstract: A lateral transistor tile is formed with first and second collector regions that longitudinally span first and second sides of the transistor tile; and a base region and an emitter region that are between the first and second collector regions and are both centered on a longitudinal midline of the transistor tile. A base-collector current, a collector-emitter current, and a base-emitter current flow horizontally; and the direction of the base-emitter current is perpendicular to the direction of the base-collector current and the collector-emitter current. Lateral BJT transistors having a variety of layouts are formed from a plurality of the tiles and share common components thereof.
    Type: Application
    Filed: November 29, 2022
    Publication date: April 20, 2023
    Applicant: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Patent number: 11552168
    Abstract: A lateral transistor tile is formed with first and second collector regions that longitudinally span first and second sides of the transistor tile; and a base region and an emitter region that are between the first and second collector regions and are both centered on a longitudinal midline of the transistor tile. A base-collector current, a collector-emitter current, and a base-emitter current flow horizontally; and the direction of the base-emitter current is perpendicular to the direction of the base-collector current and the collector-emitter current. Lateral BJT transistors having a variety of layouts are formed from a plurality of the tiles and share common components thereof.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: January 10, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Publication number: 20220231152
    Abstract: A thyristor tile includes first and second PNP tiles and first and second NPN tiles. Each PNP tile is adjacent to both NPN tiles, and each NPN tile is adjacent to both PNP tiles. A thyristor includes a plurality of PNP tiles and a plurality of NPN tiles. The PNP and NPN tiles are arranged in an alternating configuration in both rows and columns. The PNP tiles are oriented perpendicular to the NPN tiles. Interconnect layers have a geometry that enables even distribution of signals to the PNP and NPN tiles.
    Type: Application
    Filed: April 7, 2022
    Publication date: July 21, 2022
    Applicant: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Patent number: 11316037
    Abstract: A thyristor tile includes first and second PNP tiles and first and second NPN tiles. Each PNP tile is adjacent to both NPN tiles, and each NPN tile is adjacent to both PNP tiles. A thyristor includes a plurality of PNP tiles and a plurality of NPN tiles. The PNP and NPN tiles are arranged in an alternating configuration in both rows and columns. The PNP tiles are oriented perpendicular to the NPN tiles. Interconnect layers have a geometry that enables even distribution of signals to the PNP and NPN tiles.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: April 26, 2022
    Assignee: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Publication number: 20210043729
    Abstract: A lateral transistor tile is formed with first and second collector regions that longitudinally span first and second sides of the transistor tile; and a base region and an emitter region that are between the first and second collector regions and are both centered on a longitudinal midline of the transistor tile. A base-collector current, a collector-emitter current, and a base-emitter current flow horizontally; and the direction of the base-emitter current is perpendicular to the direction of the base-collector current and the collector-emitter current. Lateral BJT transistors having a variety of layouts are formed from a plurality of the tiles and share common components thereof.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 11, 2021
    Applicant: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Patent number: 10811497
    Abstract: A lateral transistor tile is formed with first and second collector regions that longitudinally span first and second sides of the transistor tile; and a base region and an emitter region that are between the first and second collector regions and are both centered on a longitudinal midline of the transistor tile. A base-collector current, a collector-emitter current, and a base-emitter current flow horizontally; and the direction of the base-emitter current is perpendicular to the direction of the base-collector current and the collector-emitter current. Lateral BJT transistors having a variety of layouts are formed from a plurality of the tiles and share common components thereof.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: October 20, 2020
    Assignee: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Publication number: 20200303529
    Abstract: A thyristor tile includes first and second PNP tiles and first and second NPN tiles. Each PNP tile is adjacent to both NPN tiles, and each NPN tile is adjacent to both PNP tiles. A thyristor includes a plurality of PNP tiles and a plurality of NPN tiles. The PNP and NPN tiles are arranged in an alternating configuration in both rows and columns. The PNP tiles are oriented perpendicular to the NPN tiles. Interconnect layers have a geometry that enables even distribution of signals to the PNP and NPN tiles.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Applicant: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Patent number: 10700187
    Abstract: A thyristor tile includes first and second PNP tiles and first and second NPN tiles. Each PNP tile is adjacent to both NPN tiles, and each NPN tile is adjacent to both PNP tiles. A thyristor includes a plurality of PNP tiles and a plurality of NPN tiles. The PNP and NPN tiles are arranged in an alternating configuration in both rows and columns. The PNP tiles are oriented perpendicular to the NPN tiles. Interconnect layers have a geometry that enables even distribution of signals to the PNP and NPN tiles.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: June 30, 2020
    Assignee: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Publication number: 20190371924
    Abstract: A thyristor tile includes first and second PNP tiles and first and second NPN tiles. Each PNP tile is adjacent to both NPN tiles, and each NPN tile is adjacent to both PNP tiles. A thyristor includes a plurality of PNP tiles and a plurality of NPN tiles. The PNP and NPN tiles are arranged in an alternating configuration in both rows and columns. The PNP tiles are oriented perpendicular to the NPN tiles. Interconnect layers have a geometry that enables even distribution of signals to the PNP and NPN tiles.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Inventors: Vadim Kushner, Nima Beikae
  • Publication number: 20190319097
    Abstract: A lateral transistor tile is formed with first and second collector regions that longitudinally span first and second sides of the transistor tile; and a base region and an emitter region that are between the first and second collector regions and are both centered on a longitudinal midline of the transistor tile. A base-collector current, a collector-emitter current, and a base-emitter current flow horizontally; and the direction of the base-emitter current is perpendicular to the direction of the base-collector current and the collector-emitter current. Lateral BJT transistors having a variety of layouts are formed from a plurality of the tiles and share common components thereof.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 17, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventors: Vadim Kushner, Nima Beikae
  • Publication number: 20190312139
    Abstract: A semiconductor device includes an active region formed over a substrate. The active region includes a FET and a diode. The FET includes one or more FET fingers. Each FET finger includes a FET source region, a FET drain region, and a lateral FET gate electrode. The diode includes one or more diode fingers. Each of the diode fingers includes a diode anode region electrically coupled to the FET source region, a diode cathode region electrically coupled to the FET drain region, and a lateral diode gate electrode electrically coupled to the diode anode region and electrically isolated from the lateral FET gate electrode. The FET fingers are active fingers of the semiconductor device and the diode fingers are dummy fingers of the semiconductor device. The diode is configured to clamp a maximum voltage developed across the FET drain region and the FET source region.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 10, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventors: Shanghui Larry Tu, Vadim Kushner, Eric Vann
  • Patent number: 10424661
    Abstract: A semiconductor device includes an active region formed over a substrate. The active region includes a FET and a diode. The FET includes one or more FET fingers. Each FET finger includes a FET source region, a FET drain region, and a lateral FET gate electrode. The diode includes one or more diode fingers. Each of the diode fingers includes a diode anode region electrically coupled to the FET source region, a diode cathode region electrically coupled to the FET drain region, and a lateral diode gate electrode electrically coupled to the diode anode region and electrically isolated from the lateral FET gate electrode. The FET fingers are active fingers of the semiconductor device and the diode fingers are dummy fingers of the semiconductor device. The diode is configured to clamp a maximum voltage developed across the FET drain region and the FET source region.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: September 24, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Shanghui Larry Tu, Vadim Kushner, Eric Vann
  • Patent number: 9509136
    Abstract: Systems, methods, and apparatus for ESD protection with adjustable trigger voltage decoupled from DC breakdown voltage for semiconductor devices including field effect transistors (FETs), and particularly to metal-oxide-semiconductors (MOSFETs) fabricated on silicon-on-insulator (“SOI”) and silicon-on-sapphire (“SOS”) substrates are described. The apparatus and method are configured to change reverse biased drain junctions which in turn can control the DC breakdown voltage and the trigger voltage.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: November 29, 2016
    Assignee: Peregrine Semiconductor Corporation
    Inventors: Vadim Kushner, Erica Poole
  • Publication number: 20160268800
    Abstract: Systems, methods, and apparatus for ESD protection with adjustable trigger voltage decoupled from DC breakdown voltage for semiconductor devices including field effect transistors (FETs), and particularly to metal-oxide-semiconductors (MOSFETs) fabricated on silicon-on-insulator (“SOI”) and silicon-on-sapphire (“SOS”) substrates are described. The apparatus and method are configured to change reverse biased drain junctions which in turn can control the DC breakdown voltage and the trigger voltage.
    Type: Application
    Filed: March 9, 2015
    Publication date: September 15, 2016
    Inventors: Vadim Kushner, Erica Poole
  • Patent number: 8982516
    Abstract: An area-efficient, high voltage, single polarity ESD protection device (300) is provided which includes an p-type substrate (303); a first p-well (308-1) formed in the substrate and sized to contain n+ and p+ contact regions (310, 312) that are connected to a cathode terminal; a second, separate p-well (308-2) formed in the substrate and sized to contain only a p+ contact region (311) that is connected to an anode terminal; and an electrically floating n-type isolation structure (304, 306, 307-2) formed in the substrate to surround and separate the first and second semiconductor regions. When a positive voltage exceeding a triggering voltage level is applied to the cathode and anode terminals, the ESD protection device triggers an inherent thyristor into a snap-back mode to provide a low impedance path through the structure for discharging the ESD current.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 17, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Amaury Gendron, Chai Ean Gill, Vadim A. Kushner, Rouying Zhan
  • Publication number: 20140211346
    Abstract: An area-efficient, high voltage, single polarity ESD protection device (300) is provided which includes an p-type substrate (303); a first p-well (308-1) formed in the substrate and sized to contain n+ and p+ contact regions (310, 312) that are connected to a cathode terminal; a second, separate p-well (308-2) formed in the substrate and sized to contain only a p+ contact region (311) that is connected to an anode terminal; and an electrically floating n-type isolation structure (304, 306, 307-2) formed in the substrate to surround and separate the first and second semiconductor regions. When a positive voltage exceeding a triggering voltage level is applied to the cathode and anode terminals, the ESD protection device triggers an inherent thyristor into a snap-back mode to provide a low impedance path through the structure for discharging the ESD current.
    Type: Application
    Filed: January 25, 2013
    Publication date: July 31, 2014
    Inventors: Amaury Gendron, Chai Ean Gill, Vadim A. Kushner, Rouying Zhan
  • Patent number: 8390092
    Abstract: An area-efficient, high voltage, single polarity ESD protection device (300) is provided which includes an p-type substrate (303); a first p-well (308-1) formed in the substrate and sized to contain n+ and p+ contact regions (310, 312) that are connected to a cathode terminal; a second, separate p-well (308-2) formed in the substrate and sized to contain only a p+ contact region (311) that is connected to an anode terminal; and an electrically floating n-type isolation structure (304, 306, 307-2) formed in the substrate to surround and separate the first and second semiconductor regions. When a positive voltage exceeding a triggering voltage level is applied to the cathode and anode terminals, the ESD protection device triggers an inherent thyristor into a snap-back mode to provide a low impedance path through the structure for discharging the ESD current.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 5, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Amaury Gendron, Chai Ean Gill, Vadim A. Kushner, Rouying Zhan
  • Publication number: 20120119331
    Abstract: An area-efficient, high voltage, single polarity ESD protection device (300) is provided which includes an p-type substrate (303); a first p-well (308-1) formed in the substrate and sized to contain n+ and p+ contact regions (310, 312) that are connected to a cathode terminal; a second, separate p-well (308-2) formed in the substrate and sized to contain only a p+ contact region (311) that is connected to an anode terminal; and an electrically floating n-type isolation structure (304, 306, 307-2) formed in the substrate to surround and separate the first and second semiconductor regions. When a positive voltage exceeding a triggering voltage level is applied to the cathode and anode terminals, the ESD protection device triggers an inherent thyristor into a snap-back mode to provide a low impedance path through the structure for discharging the ESD current.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 17, 2012
    Inventors: Amaury Gendron, Chai Ean Gill, Vadim A. Kushner, Rouying Zhan
  • Publication number: 20100301389
    Abstract: An electrostatic discharge protection structure includes a first vertical bipolar junction transistor; a second vertical bipolar junction transistor, wherein the second vertical bipolar junction transistor has a common collector with the first vertical bipolar junction transistor, and the common collector has a first conductivity; a horizontal bipolar junction transistor wherein the collector of the horizontal bipolar junction transistor has a second conductivity that is a different conductivity than the first conductivity, and the base of the horizontal bipolar junction transistor is electrically coupled to the common collector of the first vertical bipolar junction transistor and the second vertical bipolar junction transistor; a first avalanche diode electrically coupled to the base and the collector of the first vertical bipolar junction transistor; and a second avalanche diode electrically coupled to the base and the collector of the second vertical bipolar junction transistor.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Inventors: Vadim A. Kushner, Amaury Gendron, Chai Ean E. Gill