Patents by Inventor Vadim Daskal

Vadim Daskal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070187874
    Abstract: A method for manufacturing blades for surgical and other uses from either a crystalline or polycrystalline material, preferably in the form of a wafer, comprises preparing the crystalline or polycrystalline wafers by mounting them and machining trenches into the wafers. The methods for machining the trenches, which form the bevel blade surfaces, include a diamond blade saw, laser system, ultrasonic machine, a hot forge press and a router. When a router is used, through-holes are drilled in the wafer to define the starting locations of the trenches. After the trenches are formed, the wafers are placed in an etchant solution which isotropically etches the wafers in a uniform manner, such that layers of crystalline or polycrystalline material are removed uniformly, producing single or double bevel blades, with each bevel having one or more facets. Nearly any bevel angle can be machined into the wafer which remains after etching.
    Type: Application
    Filed: September 17, 2004
    Publication date: August 16, 2007
    Inventors: Vadim Daskal, Joseph Keenan, James Hughes
  • Publication number: 20070045229
    Abstract: A method for manufacturing surgical blades from either a crystalline or poly-crystalline material, preferably in the form of a wafer, is disclosed. The method includes preparing the crystalline or poly-crystalline wafers by mounting them and machining trenches into the wafers. The methods for machining the trenches, which form the bevel blade surfaces, include a diamond blade saw, laser system, ultrasonic machine, and a hot forge press. The wafers are then placed in an etchant solution which isotropically etches the wafers in a uniform manner, such that layers of crystalline or poly-crystalline material are removed uniformly, producing single or double bevel blades. Nearly any angle can be machined into the wafer which remains after etching. The resulting radii of the blade edges is 5-500 nm, which is the same caliber as a diamond edged blade, but manufactured at a fraction of the cost.
    Type: Application
    Filed: July 31, 2006
    Publication date: March 1, 2007
    Inventors: Joseph Keenan, Vadim Daskal, James Hughes
  • Publication number: 20050266680
    Abstract: Ophthalmic surgical blades are manufactured from either a single crystal or poly-crystalline material, preferably in the form of a wafer. The method comprises preparing the single crystal or poly-crystalline wafers by mounting them and etching trenches into the wafers using one of several processes. Methods for machining the trenches, which form the bevel blade surfaces, include a diamond blade saw, laser system, ultrasonic machine, a hot forge press and a router. Other processes include wet etching (isotropic and anisotropic) and dry etching (isotropic and anisotropic, including reactive ion etching), and combinations of these etching steps. The wafers are then placed in an etchant solution which isotropically etches the wafers in a uniform manner, such that layers of crystalline or poly-crystalline material are removed uniformly, producing single, double or multiple bevel blades. Nearly any angle can be machined into the wafer, and the machined angle remains after etching.
    Type: Application
    Filed: April 29, 2005
    Publication date: December 1, 2005
    Inventors: Vadim Daskal, Joseph Keenan, James Hughes, Attila Kiss, Susan Chavez
  • Publication number: 20050188548
    Abstract: Ophthalmic surgical blades are manufactured from either a crystalline or polycrystalline material, preferably in the form of a wafer. The method comprises preparing the crystalline or polycrystalline wafers by mounting them and machining trenches into the wafers. Methods for machining the trenches, which form the bevel blade surfaces, include a diamond blade saw, laser system, ultrasonic machine, a hot forge press and a router. The wafers are then placed in an etchant solution which isotropically etches the wafers in a uniform manner, such that layers of crystalline or polycrystalline material are removed uniformly, producing single, double or multiple bevel blades. Nearly any bevel angle can be machined into the wafer which remains after etching. The resulting radii of the blade edges is 5-500 nm, which is the same caliber as a diamond edged blade, but manufactured at a fraction of the cost.
    Type: Application
    Filed: September 17, 2004
    Publication date: September 1, 2005
    Inventors: Vadim Daskal, Joseph Keenan, James Hughes, Attila Kiss, Susan Chavez
  • Publication number: 20050155955
    Abstract: A system and method for producing a matte finish on a silicon surgical blade or other surface, wherein the system comprises a computer, laser and lens assembly, and an x-y coordinate controller which controls the position of the laser in accordance with received instructions. The method comprises creating a design or pattern to be ablated on the surgical blade by the laser. A data set is then generated from file representing the design or pattern, and the data set instructions are sent to the x-y coordinate controller and laser and lens assembly. The x-y coordinate controller moves the laser to a location where a crater is to be formed, and the laser illuminates the surgical blade, burning a pit or crater of pre-determined diameter, depth and spacing into the surgical blade. The process then rapidly repeats itself until the design or pattern has been created in the surgical blade.
    Type: Application
    Filed: September 9, 2004
    Publication date: July 21, 2005
    Inventors: Vadim Daskal, Attila Kiss