Patents by Inventor Vadim Karagodsky

Vadim Karagodsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150286006
    Abstract: A vertical optical coupler which redirects light transmission in response to the interaction between a sub-wavelength high contrast grating (HCG) having a plurality of spaced apart segments of grating material which is optically coupled to a waveguide. For a selected set of material, grating geometry, gaps and spacing, the light directed at a normal incidence into the optical coupler is angularly displaced in traveling in the optical waveguide, while light directed along the optical waveguide is angularly displaced in being output at normal incidence from the optical coupler. The coupler is integrated into a number of device embodiments, including: a coupler between angularly displaced waveguides, lasers, light emitting diodes (LEDs) and solar cells.
    Type: Application
    Filed: October 16, 2013
    Publication date: October 8, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Connie Chang-Hasnain, Li Zhu, Vadim Karagodsky, Weijian Yang
  • Patent number: 8442374
    Abstract: Optical waveguides using segmented periodically-spaced high contrast gratings bounding a hollow core propagation region on at least two sides. Incident light is received in a hollow waveguide (HW) region (core) between opposing HCG faces which provide lateral confinement in response to glancing reflections of the incident light beam from high refractive index segments of the HCG as it traverses the core. Embodiments are described for planar waveguides (1D) having a planar core between two planar HCGs, as well as 2D waveguides, such as having rectangular segments of the HCG through which light is propagated. Additionally, other configurations of HCG-HW, including those having arbitrary incidence and azimuth, angled HCG segments, propagation in a direction which is transverse, or alternatively parallel, to the segments of the HCG.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: May 14, 2013
    Assignee: The Regents of the University of California
    Inventors: Connie Chang-Hasnain, Ye Zhou, Vadim Karagodsky, Forrest G. Sedgwick, Michael Chung-Yi Huang
  • Publication number: 20120128019
    Abstract: Multiple-wavelength VCSEL array apparatus and method having a high contrast grating (HCG) mirror which can be implemented on a single substrate in which only the dimensions of the HCG (e.g., duty cycle or the period) need be changed to alter the wavelength of a given VCSEL in response to changing the reflectivity phase of the HCG mirror. The HCG can be defined by any desired lithographic process. By using a broadband HCG mirror a large wavelength span over 100 nm is provided, such as covering the entire C-band. The HCG multi-wavelength VCSEL array enables single-transverse mode emission and polarization control and scalability with respect to wavelength.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 24, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Connie Chang-Hasnain, Bala Subrahmanyam Pesala, Vadim Karagodsky
  • Publication number: 20110280533
    Abstract: Optical waveguides using segmented periodically-spaced high contrast gratings bounding a hollow core propagation region on at least two sides. Incident light is received in a hollow waveguide (HW) region (core) between opposing HCG faces which provide lateral confinement in response to glancing reflections of the incident light beam from high refractive index segments of the HCG as it traverses the core. Embodiments are described for planar waveguides (1D) having a planar core between two planar HCGs, as well as 2D waveguides, such as having rectangular segments of the HCG through which light is propagated. Additionally, other configurations of HCG-HW, including those having arbitrary incidence and azimuth, angled HCG segments, propagation in a direction which is transverse, or alternatively parallel, to the segments of the HCG.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 17, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Connie Chang-Hasnain, Ye Zhou, Vadim Karagodsky, Forrest G. Sedgwick, Michael Chung-Yi Huang