Patents by Inventor Vadim V. Lozovoy

Vadim V. Lozovoy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8861075
    Abstract: A high peak intensity laser amplification system and the method therein implemented are provided. In a first aspect of the invention, the laser system includes at least one optical member (27) operably introducing a phase function into a high peak intensity laser pulse (25). A further aspect includes introducing destructive interference in an unchirped laser pulse prior to amplification and reconstructive interference in the output laser pulse after amplification. Dynamic pulse shaping is employed in another aspect of the present invention.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: October 14, 2014
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Patent number: 8675699
    Abstract: A laser pulse synthesis system is provided. A further aspect of the present system uses a phase-only modulator to measure ultrashort laser pulses. An additional aspect achieves interferences between split subpulses even though the subpulses have different frequencies. Yet another aspect of a laser system employs multi-comb phase shaping of a laser pulse. In another aspect, a laser system includes pulse characterization and arbitrary or variable waveform generation through spectral phase comb shaping.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: March 18, 2014
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Patent number: 8633437
    Abstract: A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: January 21, 2014
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Patent number: 8618470
    Abstract: Enantiomers are characterized, identified, synthesized and/or modified with a shaped laser pulse. In another aspect of the present invention, binary shaping and circular polarization are employed with a laser pulse. A further aspect of the present invention provides a quarter-wave plate in combination with one or more pulse shapers.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: December 31, 2013
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Patent number: 8311069
    Abstract: A direct ultrashort laser system is provided. In another aspect of the present invention, a method of measuring laser pulse phase distortions is performed without requiring an adaptive pulse shaper or interferometry. In yet another aspect of the present invention, a system, a method of operating, a control system, and a set of programmable computer software instructions perform Multiphoton Intrapulse Interference Phase Scan processes, calculations, characterization and/or correction without requiring an adaptive pulse shaper.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 13, 2012
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy, Bingwei Wu
  • Patent number: 8265110
    Abstract: A laser and monitoring system is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan (hereinafter “MIIPS”) method is used to characterize the spectral phase of femtosecond laser pulses and to correct them. A further aspect of the system of the present invention is employed to monitor environmental chemicals and biological agents, including toxins, explosives, and diseases.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: September 11, 2012
    Assignee: Board of Trustees Operating Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy, Matthew Comstock
  • Patent number: 8208505
    Abstract: A laser system provides harmonic generation in a laser beam pulse. In another aspect of the present invention, a laser operably remits a laser pulse, a gaseous optical medium operably creates third or greater harmonic generation in the pulse, and a controller characterizes and compensates for distortions in the pulse. A further aspect of the present invention employs multiple optical media arranged to cause cascading harmonic generations in a laser pulse.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: June 26, 2012
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Don Ahmasi Harris, Vadim V. Lozovoy
  • Patent number: 8208504
    Abstract: A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and a spectrometer. Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan system and method characterize the spectral phase of femtosecond laser pulses. Fiber optic communication systems, photodynamic therapy and pulse characterization tests use the laser system with additional aspects of the present invention.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: June 26, 2012
    Assignee: Board of Trustees Operation Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Publication number: 20120147911
    Abstract: A direct ultrashort laser system is provided. In another aspect of the present invention, a method of measuring laser pulse phase distortions is performed without requiring an adaptive pulse shaper or interferometry. In yet another aspect of the present invention, a system, a method of operating, a control system, and a set of programmable computer software instructions perform Multi photon Intrapulse Interference Phase Scan processes, calculations, characterization and/or correction without requiring an adaptive pulse shaper.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 14, 2012
    Applicant: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy, Bingwei Wu
  • Publication number: 20120076504
    Abstract: A high peak intensity laser amplification system and the method therein implemented are provided. In a first aspect of the invention, the laser system includes at least one optical member (27) operably introducing a phase function into a high peak intensity laser pulse (25). A further aspect includes introducing destructive interference in an unchirped laser pulse prior to amplification and reconstructive interference in the output laser pulse after amplification. Dynamic pulse shaping is employed in another aspect of the present invention.
    Type: Application
    Filed: February 26, 2010
    Publication date: March 29, 2012
    Applicant: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Publication number: 20100187208
    Abstract: A laser pulse synthesis system is provided. A further aspect of the present system uses a phase-only modulator to measure ultrashort laser pulses. An additional aspect achieves interferences between split subpulses even though the subpulses have different frequencies. Yet another aspect of a laser system employs multi-comb phase shaping of a laser pulse. In another aspect, a laser system includes pulse characterization and arbitrary or variable waveform generation through spectral phase comb shaping.
    Type: Application
    Filed: January 22, 2010
    Publication date: July 29, 2010
    Applicant: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Publication number: 20090296744
    Abstract: Enantiomers are characterized, identified, synthesized and/or modified with a shaped laser pulse. In another aspect of the present invention, binary shaping and circular polarization are employed with a laser pulse. A further aspect of the present invention provides a quarter-wave plate in combination with one or more pulse shapers.
    Type: Application
    Filed: November 29, 2006
    Publication date: December 3, 2009
    Applicant: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Patent number: 7609731
    Abstract: A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: October 27, 2009
    Assignee: Board of Trustees Operating Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy, Matthew Comstock
  • Publication number: 20090257464
    Abstract: A control system and apparatus for use with an ultra-fast laser is provided. In another aspect of the present invention, the apparatus includes a laser, pulse shaper, detection device and control system. A multiphoton intrapulse interference method is used to characterize the spectral phase of laser pulses and to compensate any distortions in an additional aspect of the present invention. In another aspect of the present invention, a system employs multiphoton intrapulse interference phase scan. Furthermore, another aspect of the present invention locates a pulse shaper and/or MIIPS unit between a laser oscillator and an output of a laser amplifier.
    Type: Application
    Filed: June 23, 2009
    Publication date: October 15, 2009
    Applicant: Board Of Trustees Of Michigan State University
    Inventors: Marcos Dantus, Igor Pastirk, Vadim V. Lozovoy, Matthew Comstock
  • Publication number: 20090256071
    Abstract: A laser and monitoring system is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan (hereinafter “MIIPS”) method is used to characterize the spectral phase of femtosecond laser pulses and to correct them. A further aspect of the system of the present invention is employed to monitor environmental chemicals and biological agents, including toxins, explosives, and diseases.
    Type: Application
    Filed: June 22, 2009
    Publication date: October 15, 2009
    Applicant: Board of Trustees operating Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy, Matthew Comstock
  • Publication number: 20090238222
    Abstract: A laser system provides harmonic generation in a laser beam pulse. In another aspect of the present invention, a laser operably remits a laser pulse, a gaseous optical medium operably creates third or greater harmonic generation in the pulse, and a controller characterizes and compensates for distortions in the pulse. A further aspect of the present invention employs multiple optical media arranged to cause cascading harmonic generations in a laser pulse.
    Type: Application
    Filed: May 14, 2009
    Publication date: September 24, 2009
    Applicant: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Don Ahmasi Harris, Vadim V. Lozovoy
  • Patent number: 7583710
    Abstract: A laser and monitoring system is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan (hereinafter “MIIPS”) method is used to characterize the spectral phase of femtosecond laser pulses and to correct them. A further aspect of the system of the present invention is employed to monitor environmental chemicals and biological agents, including toxins, explosives, and diseases.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: September 1, 2009
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Marcos Dantus, Vadim V Lozovoy, Matthew Comstock
  • Patent number: 7567596
    Abstract: A control system and apparatus for use with an ultra-fast laser is provided. In another aspect of the present invention, the apparatus includes a laser, pulse shaper, detection device and control system. A multiphoton intrapulse interference method is used to characterize the spectral phase of laser pulses and to compensate for any distortions in an additional aspect of the present invention. In another aspect of the present invention, a system employs multiphoton intrapulse interference phase scan. Furthermore, another aspect of the present invention locates a pulse shaper and/or MIIPS unit between a spectral dispersion point in a laser oscillator and an output of a laser amplifier.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: July 28, 2009
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Igor Pastirk, Vadim V. Lozovoy, Matthew Comstock
  • Publication number: 20090122819
    Abstract: A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and a spectrometer. Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan system and method characterize the spectral phase of femtosecond laser pulses. Fiber optic communication systems, photodynamic therapy and pulse characterization tests use the laser system with additional aspects of the present invention.
    Type: Application
    Filed: November 4, 2008
    Publication date: May 14, 2009
    Applicant: Board of Trustees Operating Michigan State Univers
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Patent number: 7450618
    Abstract: A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and a spectrometer. Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan system and method characterize the spectral phase of femtosecond laser pulses. Fiber optic communication systems, photodynamic therapy and pulse characterization tests use the laser system with additional aspects of the present invention.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: November 11, 2008
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy