Patents by Inventor Vadym Zayets

Vadym Zayets has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8750666
    Abstract: An optical device having a plasmonic waveguide, in which the plasmonic waveguide has a layered structure of at least three layers that a ferromagnetic metal layer, a first dielectric layer, and a second dielectric layer are layered in this order, in which the first and second dielectric layers are layers that allow light to be transmitted therethrough, and in which a refractive index of the second dielectric layer is higher than a refractive index of the first dielectric layer; and an optical isolator, having the optical device.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: June 10, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Vadym Zayets, Koji Ando, Hidekazu Saito, Shinji Yuasa
  • Patent number: 8270198
    Abstract: A nonvolatile optical memory element in which a ferromagnetic body is provided on a semiconductor causes such a problem that in a case where magnetization of the ferromagnetic body is read by light, magneto-optical response becomes very small when the ferromagnetic body is small in volume. The present invention provides a memory element, a memory device, and a data reading method, each of which is applicable to data reading from a nonvolatile optical memory element. In a nonvolatile optical memory element having a structure in which a ferromagnetic body is provided on a semiconductor that is connected to an optical waveguide, electrons are injected into the semiconductor via the ferromagnetic body so that the electrons that are spin-polarized according to a magnetization direction of the ferromagnetic body are injected into the semiconductor, thereby enlarging a region in which a photomagnetic effect occurs effectively.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: September 18, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Vadym Zayets, Koji Ando, Shinji Yuasa, Hidekazu Saito
  • Patent number: 7936631
    Abstract: A very small magnetic tunnel junction is formed on a semiconductor p-i-n diode. Spin-polarized current which is generated by circular polarized light or elliptically-polarized light, is injected into a free layer of the magnetic tunnel junction so that magnetization direction (two opposite directions) in the free layer is changed based on the information, whereby information is stored in the memory element.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: May 3, 2011
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Vadym Zayets, Koji Ando
  • Publication number: 20110026296
    Abstract: A nonvolatile optical memory element in which a ferromagnetic body is provided on a semiconductor causes such a problem that in a case where magnetization of the ferromagnetic body is read by light, magneto-optical response becomes very small when the ferromagnetic body is small in volume. The present invention provides a memory element, a memory device, and a data reading method, each of which is applicable to data reading from a nonvolatile optical memory element. In a nonvolatile optical memory element having a structure in which a ferromagnetic body is provided on a semiconductor that is connected to an optical waveguide, electrons are injected into the semiconductor via the ferromagnetic body so that the electrons that are spin-polarized according to a magnetization direction of the ferromagnetic body are injected into the semiconductor, thereby enlarging a region in which a photomagnetic effect occurs effectively.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 3, 2011
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Vadym Zayets, Koji Ando, Shinji Yuasa, Hidekazu Saito
  • Publication number: 20090175110
    Abstract: A very small magnetic tunnel junction is formed on a semiconductor p-i-n diode. Spin-polarized current which is generated by circular polarized light or elliptically-polarized light, is injected into a free layer of the magnetic tunnel junction so that magnetization direction (two opposite directions) in the free layer is changed based on the information, whereby information is stored in the memory element.
    Type: Application
    Filed: January 9, 2009
    Publication date: July 9, 2009
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Vadym Zayets, Koji Ando
  • Patent number: 7171096
    Abstract: The present invention relates to a high-speed optical memory element. In order to increase speed of a memory element, optical pulse is recorded and read all-optically without conversion into electrical signal at very high speed. Optically-induced spin accumulation is used for recording the ferromagnetic metal embedded into optical waveguide operates as a high speed memory element. The ferromagnetic metal is sandwiched between a conductor on one side and a tunnel barrier followed by a conductor on the other side. The voltage is applied between two conductors. For data recording, the optically induced spin-polarized tunneling and spin accumulation is used. The optically induced spin-polarized tunneling occurs due to absorption of circularly polarized light. The torque of accumulated spin reverses magnetization of ferromagnetic metal. For reading Faraday rotation or non-reciprocal loss/gain in semiconductor-ferromagnetic-metal hybrid is used.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: January 30, 2007
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Vadym Zayets
  • Publication number: 20060002037
    Abstract: The present invention relates to a high-speed optical memory element. In order to increase speed of a memory element, optical pulse is recorded and read all-optically without conversion into electrical signal at very high speed. Optically-induced spin accumulation is used for recording the ferromagnetic metal embedded into optical waveguide operates as a high speed memory element. The ferromagnetic metal is sandwiched between a conductor on one side and a tunnel barrier followed by a conductor on the other side. The voltage is applied between two conductors. For data recording, the optically induced spin-polarized tunneling and spin accumulation is used. The optically induced spin-polarized tunneling occurs due to absorption of circularly polarized light. The torque of accumulated spin reverses magnetization of ferromagnetic metal. For reading Faraday rotation or non-reciprocal loss/gain in semiconductor-ferromagnetic-metal hybrid is used.
    Type: Application
    Filed: July 5, 2005
    Publication date: January 5, 2006
    Inventor: Vadym Zayets