Patents by Inventor Vahid Naderyan

Vahid Naderyan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11310600
    Abstract: An acoustic transducer for generating electrical signals in response to acoustic signals includes a transducer substrate, a back plate, and a diaphragm assembly. The diaphragm assembly includes a first diaphragm and a second diaphragm coupled thereto. The second diaphragm is positioned closer to the back plate than the first diaphragm. The second diaphragm includes a plurality of diaphragm apertures configured to allow air to pass through the second diaphragm. Each of the back plate and the first diaphragm are coupled to the transducer substrate at their periphery. In an embodiment, the transducer includes a post coupled to the first diaphragm and the second diaphragm, the post configured to prevent movement of the second diaphragm relative to the first diaphragm in a direction substantially perpendicular to the second diaphragm.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: April 19, 2022
    Assignee: KNOWLES ELECTRONICS, LLC
    Inventors: Vahid Naderyan, Sung Bok Lee, Michael Kuntzman
  • Patent number: 11228845
    Abstract: A microphone assembly includes an acoustic transducer having a back plate and a diaphragm, such that a surface of the back plate includes a plurality of holes. At least a portion of the plurality of holes are arranged in a non-uniform pattern. The non-uniform pattern includes holes of varying sizes spaced apart from neighboring holes by varying distances. The microphone assembly further includes an audio signal electrical circuit configured to receive an acoustic signal from the acoustic transducer.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: January 18, 2022
    Assignee: KNOWLES ELECTRONICS, LLC
    Inventors: Vahid Naderyan, Michael Kuntzman, Sung Bok Lee, Wade Conklin
  • Patent number: 11206494
    Abstract: A microphone device includes a base and a microelectromechanical system (MEMS) transducer and an integrated circuit (IC) disposed on the base. The microphone device also includes a cover mounted on the base and covering the MEMS transducer and the IC. The MEMS transducer includes a diaphragm attached to a surface of the substrate and a back plate mounted on the substrate and in a spaced apart relationship with the diaphragm. The diaphragm is attached to the surface of the substrate along at least a portion of a periphery of the diaphragm. The diaphragm can include a silicon nitride insulating layer, and a conductive layer, that faces a conductive layer of the back plate. The MEMS transducer can include a peripheral support structure that is disposed between at least a portion of the diaphragm and the substrate. The diaphragm can include one or more pressure equalizing apertures.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: December 21, 2021
    Assignee: Knowles Electronics, LLC
    Inventors: Sung Bok Lee, Vahid Naderyan, Bing Yu, Michael Kuntzman, Yunfei Ma, Wade Conklin, Peter Loeppert
  • Patent number: 11197088
    Abstract: A MEMS transducer includes a transducer substrate, a back plate, a diaphragm, and an intermediate layer. The transducer substrate includes an aperture. The back plate is coupled to a first surface of the transducer substrate and covers the aperture. The diaphragm is oriented substantially parallel to the back plate and is spaced apart from the back plate to form a gap. The intermediate layer is coupled to the diaphragm and the back plate and includes an acoustic relief channel, which fluidly couples the gap to an environment surrounding the MEMS transducer.
    Type: Grant
    Filed: May 10, 2020
    Date of Patent: December 7, 2021
    Assignee: Knowles Electronics, LLC
    Inventors: Vahid Naderyan, Mohammad Mohammadi, Evan Llamas-Young
  • Publication number: 20210274287
    Abstract: An acoustic transducer for generating electrical signals in response to acoustic signals includes a transducer substrate, a back plate, and a diaphragm assembly. The diaphragm assembly includes a first diaphragm and a second diaphragm coupled thereto. The second diaphragm is positioned closer to the back plate than the first diaphragm. The second diaphragm includes a plurality of diaphragm apertures configured to allow air to pass through the second diaphragm. Each of the back plate and the first diaphragm are coupled to the transducer substrate at their periphery. In an embodiment, the transducer includes a post coupled to the first diaphragm and the second diaphragm, the post configured to prevent movement of the second diaphragm relative to the first diaphragm in a direction substantially perpendicular to the second diaphragm.
    Type: Application
    Filed: November 8, 2019
    Publication date: September 2, 2021
    Inventors: Vahid Naderyan, Sung Bok Lee, Michael Kuntzman
  • Publication number: 20210239559
    Abstract: In accordance with one aspect, a device is provided having a transducer comprising a conductor, a diaphragm configured to move relative to the conductor, and a reference volume in communication with the external environment. The diaphragm separates the reference volume and the external environment. The device further includes a controller operably coupled to the transducer and configured to determine an air pressure of an external environment based at least in part on movement of the diaphragm.
    Type: Application
    Filed: July 24, 2017
    Publication date: August 5, 2021
    Applicant: Knowles Electronics, LLC
    Inventors: Andy Unruh, Sung Bok Lee, Pete Loeppert, Wade Conklin, Michael Kuntzman, Vahid Naderyan
  • Publication number: 20210176570
    Abstract: An acoustic transducer for generating electrical signals in response to acoustic signals, comprises a first diaphragm having a first corrugation formed therein. A second diaphragm has a second corrugation formed therein, and is spaced apart from the first diaphragm such that a cavity having a pressure lower than atmospheric pressure is formed therebetween. A back plate is disposed between the first diaphragm and the second diaphragm. One or more posts extend from at least one of the first diaphragm or the second diaphragm towards the other through the back plate. The one or more posts prevent each of the first diaphragm and the second diaphragm from contacting the back plate due to movement of the first diaphragm and/or the second diaphragm towards the back plate. Each of the first corrugation and the second corrugation protrude outwardly from the first diaphragm and the second diaphragm, respectively, away from the back plate.
    Type: Application
    Filed: January 27, 2021
    Publication date: June 10, 2021
    Applicant: KNOWLES ELECTRONICS, LLC
    Inventors: Michael KUNTZMAN, Michael PEDERSEN, Sung Bok LEE, Bing YU, Vahid NADERYAN, Peter LOEPPERT
  • Publication number: 20210136475
    Abstract: An acoustic transducer comprises a transducer substrate having an aperture defined therethrough. At least one diaphragm is disposed on the transducer substrate over the aperture. A back plate is disposed on the transducer substrate and axially spaced apart from the at least one diaphragm. A perimetral support structure is disposed circumferentially between the at least one diaphragm and the back plate at a radially outer perimeter of the back plate. A plurality of perimetral release holes are defined circumferentially through at least one of the at least one diaphragm or the back plate proximate to and radially inwards of the perimetral support structure, at least a portion of the plurality of perimetral release holes defining a non-circular shape.
    Type: Application
    Filed: October 27, 2020
    Publication date: May 6, 2021
    Inventors: Michael Kuntzman, Sung B. Lee, Vahid Naderyan, Yunfei Ma, Bing Yu
  • Publication number: 20210120323
    Abstract: A MEMS transducer includes a transducer substrate, a counter electrode, and a diaphragm. The counter electrode is coupled to the transducer substrate. The diaphragm is oriented substantially parallel to the counter electrode and is spaced apart from the counter electrode to form a gap. A back volume of the MEMS transducer is an enclosed volume positioned between the counter electrode and the diaphragm. A height of the gap between the counter electrode and the diaphragm is less than two times the thermal boundary layer thickness within the back volume at an upper limit of the audio frequency band of the MEMS transducer.
    Type: Application
    Filed: September 30, 2020
    Publication date: April 22, 2021
    Inventors: Vahid Naderyan, Michael Pedersen, Peter V. Loeppert
  • Publication number: 20210070610
    Abstract: A method of forming an acoustic transducer comprises providing a substrate and depositing a first structural layer on the substrate. The first structural layer is selectively etched to form at least one of an enclosed trench or an enclosed pillar thereon. A second structural layer is deposited on the first structural layer and includes a depression or a bump corresponding to the enclosed trench or pillar, respectively. At least the second structural layer is heated to a temperature above a glass transition temperature of the second structural layer causing the second structural layer to reflow. A diaphragm layer is deposited on the second structural layer such that the diaphragm layer includes at least one of a downward facing corrugation corresponding to the depression or an upward facing corrugation corresponding to the bump. The diaphragm layer is released, thereby forming a diaphragm suspended over the substrate.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Applicant: KNOWLES ELECTRONICS, LLC
    Inventors: Sung Bok LEE, Vahid NADERYAN, Bing YU, Michael KUNTZMAN, Yunfei MA, Michael PEDERSEN
  • Patent number: 10939214
    Abstract: An acoustic transducer for generating electrical signals in response to acoustic signals, comprises a first diaphragm having a first corrugation formed therein. A second diaphragm has a second corrugation formed therein, and is spaced apart from the first diaphragm such that a cavity having a pressure lower than atmospheric pressure is formed therebetween. A back plate is disposed between the first diaphragm and the second diaphragm. One or more posts extend from at least one of the first diaphragm or the second diaphragm towards the other through the back plate. The one or more posts prevent each of the first diaphragm and the second diaphragm from contacting the back plate due to movement of the first diaphragm and/or the second diaphragm towards the back plate. Each of the first corrugation and the second corrugation protrude outwardly from the first diaphragm and the second diaphragm, respectively, away from the back plate.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: March 2, 2021
    Assignee: Knowles Electronics, LLC
    Inventors: Michael Kuntzman, Michael Pedersen, Sung Bok Lee, Bing Yu, Vahid Naderyan, Peter Loeppert
  • Patent number: 10870577
    Abstract: A method of forming an acoustic transducer comprises providing a substrate and depositing a first structural layer on the substrate. The first structural layer is selectively etched to form at least one of an enclosed trench or an enclosed pillar thereon. A second structural layer is deposited on the first structural layer and includes a depression or a bump corresponding to the enclosed trench or pillar, respectively. At least the second structural layer is heated to a temperature above a glass transition temperature of the second structural layer causing the second structural layer to reflow. A diaphragm layer is deposited on the second structural layer such that the diaphragm layer includes at least one of a downward facing corrugation corresponding to the depression or an upward facing corrugation corresponding to the bump. The diaphragm layer is released, thereby forming a diaphragm suspended over the substrate.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: December 22, 2020
    Assignee: Knowles Electronics, LLC
    Inventors: Sung Bok Lee, Vahid Naderyan, Bing Yu, Michael Kuntzman, Yunfei Ma, Michael Pedersen
  • Publication number: 20200389721
    Abstract: A MEMS transducer includes a transducer substrate, a back plate, a diaphragm, and an intermediate layer. The transducer substrate includes an aperture. The back plate is coupled to a first surface of the transducer substrate and covers the aperture. The diaphragm is oriented substantially parallel to the back plate and is spaced apart from the back plate to form a gap. The intermediate layer is coupled to the diaphragm and the back plate and includes an acoustic relief channel, which fluidly couples the gap to an environment surrounding the MEMS transducer.
    Type: Application
    Filed: May 10, 2020
    Publication date: December 10, 2020
    Inventors: Vahid Naderyan, Mohammad Mohammadi, Evan Llamas-Young
  • Publication number: 20200213773
    Abstract: A microphone assembly includes an acoustic transducer having a back plate and a diaphragm, such that a surface of the back plate includes a plurality of holes. At least a portion of the plurality of holes are arranged in a non-uniform pattern. The non-uniform pattern includes holes of varying sizes spaced apart from neighboring holes by varying distances. The microphone assembly further includes an audio signal electrical circuit configured to receive an acoustic signal from the acoustic transducer.
    Type: Application
    Filed: September 14, 2018
    Publication date: July 2, 2020
    Applicant: Knowles Electronics, LLC
    Inventors: Vahid Naderyan, Michael Kuntzman, Sung Bok Lee, Wade Conklin
  • Publication number: 20200112800
    Abstract: A microphone device includes a base and a microelectromechanical system (MEMS) transducer and an integrated circuit (IC) disposed on the base. The microphone device also includes a cover mounted on the base and covering the MEMS transducer and the IC. The MEMS transducer includes a diaphragm attached to a surface of the substrate and a back plate mounted on the substrate and in a spaced apart relationship with the diaphragm. The diaphragm is attached to the surface of the substrate along at least a portion of a periphery of the diaphragm. The diaphragm can include a silicon nitride insulating layer, and a conductive layer, that faces a conductive layer of the back plate. The MEMS transducer can include a peripheral support structure that is disposed between at least a portion of the diaphragm and the substrate. The diaphragm can include one or more pressure equalizing apertures.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 9, 2020
    Applicant: KNOWLES ELECTRONICS, LLC
    Inventors: Sung Bok Lee, Vahid Naderyan, Bing Yu, Michael Kuntzman, Yunfei Ma, Wade Conklin, Peter Loeppert
  • Publication number: 20200112799
    Abstract: An acoustic transducer for generating electrical signals in response to acoustic signals, comprises a first diaphragm having a first corrugation formed therein. A second diaphragm has a second corrugation formed therein, and is spaced apart from the first diaphragm such that a cavity having a pressure lower than atmospheric pressure is formed therebetween. A back plate is disposed between the first diaphragm and the second diaphragm. One or more posts extend from at least one of the first diaphragm or the second diaphragm towards the other through the back plate. The one or more posts prevent each of the first diaphragm and the second diaphragm from contacting the back plate due to movement of the first diaphragm and/or the second diaphragm towards the back plate. Each of the first corrugation and the second corrugation protrude outwardly from the first diaphragm and the second diaphragm, respectively, away from the back plate.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 9, 2020
    Applicant: KNOWLES ELECTRONICS, LLC
    Inventors: Michael Kuntzman, Michael Pedersen, Sung Bok Lee, Bing Yu, Vahid Naderyan, Peter Loeppert
  • Publication number: 20200109048
    Abstract: A method of forming an acoustic transducer comprises providing a substrate and depositing a first structural layer on the substrate. The first structural layer is selectively etched to form at least one of an enclosed trench or an enclosed pillar thereon. A second structural layer is deposited on the first structural layer and includes a depression or a bump corresponding to the enclosed trench or pillar, respectively. At least the second structural layer is heated to a temperature above a glass transition temperature of the second structural layer causing the second structural layer to reflow. A diaphragm layer is deposited on the second structural layer such that the diaphragm layer includes at least one of a downward facing corrugation corresponding to the depression or an upward facing corrugation corresponding to the bump. The diaphragm layer is released, thereby forming a diaphragm suspended over the substrate.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 9, 2020
    Applicant: KNOWLES ELECTRONICS, LLC
    Inventors: Sung Bok Lee, Vahid Naderyan, Bing Yu, Michael Kuntzman, Yunfei Ma, Michael Pedersen
  • Patent number: 10277979
    Abstract: Systems and apparatuses for a MEMS device. The MEMS device includes a diaphragm and a backplate spaced a distance from the diaphragm forming an air gap therebetween. The backplate includes a first surface facing toward the diaphragm and an opposing second surface facing away from the diaphragm. The first surface and the opposing second surface of the backplate cooperatively define a plurality of through-holes that extend through the backplate allowing air from the air gap to flow therethrough. Each of the plurality of through-holes include a first aperture disposed along the first surface, a second aperture disposed along the opposing second surface, and a sidewall extending between the first surface and the opposing second surface. The first aperture and the second aperture have different dimensions.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: April 30, 2019
    Assignee: Knowles Electronics, LLC
    Inventors: Vahid Naderyan, Wade Conklin, Michael Kuntzman, Sung Lee
  • Publication number: 20170339485
    Abstract: Systems and apparatuses for a MEMS device. The MEMS device includes a diaphragm and a backplate spaced a distance from the diaphragm forming an air gap therebetween. The backplate includes a first surface facing toward the diaphragm and an opposing second surface facing away from the diaphragm. The first surface and the opposing second surface of the backplate cooperatively define a plurality of through-holes that extend through the backplate allowing air from the air gap to flow therethrough. Each of the plurality of through-holes include a first aperture disposed along the first surface, a second aperture disposed along the opposing second surface, and a sidewall extending between the first surface and the opposing second surface. The first aperture and the second aperture have different dimensions.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 23, 2017
    Applicant: Knowles Electronics, LLC
    Inventors: Vahid Naderyan, Wade Conklin, Michael Kuntzman, Sung Bok Lee