Patents by Inventor Valentin DUBOIS

Valentin DUBOIS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11442026
    Abstract: Disclosed is a method of making a crack structure on a substrate, the crack structure being usable as a tunnelling junction structure in a nanogap device, including the controlled fracture or release of a patterned layer under built-in stress, thereby forming elements separated by nanogaps or crack-junctions. The width of the crack-defined nanogap is controlled by locally release-etching the film at a notched bridge patterned in the film. The built-in stress contributes to forming the crack and defining of the width of the crack-defined nanogap. Further, by design of the length of the bridge in a range between sub-??? to >25???, the separation between the elements, defined by the width of the crack-defined nanogaps, can be controlled for each individual crack structure from <2 nm to >100 nm. The nanogaps can be used for tunneling devices in combination with nanopores for DNA, RNA or peptides sequencing.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: September 13, 2022
    Assignee: Zedna AB
    Inventors: Valentin Dubois, Frank Niklaus, Göran Stemme
  • Publication number: 20210396733
    Abstract: A layered nanostructure including a crack-forming layer with a first notch and a second notch provided in the crack-forming layer and the first notch is disclosed. A nanocrack is provided between the first notch and the second notch. Strain release in the tensilly stressed crack-forming layer is utilized in the layered nanostructure so that the nanocrack is very uniformed and well controlled with a width that may be below 10 nm. Nanopore devices including crossing nanocracks may be provided.
    Type: Application
    Filed: August 30, 2019
    Publication date: December 23, 2021
    Applicant: Zedna AB
    Inventors: Valentin DUBOIS, Niklaus FRANK, Göran STEMME
  • Publication number: 20210349261
    Abstract: In an embodiment a device includes a device layer, a substrate defining a substrate plane extending through a point of the substrate being closest to the device layer, a waveguide configured to guide an electromagnetic wave, wherein the waveguide extends in a length direction in the device layer, and wherein the waveguide has a width in a device layer plane in a direction perpendicular to the length direction and a height out of the device layer plane in the direction perpendicular to the length direction and a support structure, wherein the support structure extends from the substrate to the device layer to support the waveguide on the substrate.
    Type: Application
    Filed: March 8, 2019
    Publication date: November 11, 2021
    Inventors: Floria Ottonello Briano, Valentin Dubois, Simon Bleiker, Arne Quellmalz, Frank Niklaus, Kristinn B. Gylfason
  • Publication number: 20210239625
    Abstract: A method of making a crack structure on a substrate, and usable as a tunnelling junction structure in a nanogap device. Such nanogap devices are in turn usable in a number of applications, notably in devices for so called quantum sequencing of DNA molecules. The method includes the controlled fracture or release of a patterned layer under built-in stress, thereby forming elements, e.g. cantilevering parts or electrodes, separated by nanogaps, so-called crack structures, or crack-junctions (CJs). The width of the crack-defined nanogap is controlled by locally release-etching the film at a notched bridge that is patterned in the film. The built-in stress contributes to forming the crack and defining of the width of the crack-defined nanogap. Further, by design of the length of the bridge in a range between sub-??? to >25???, the separation between the elements, defined by the width of the crack-defined nanogaps, can be controlled for each individual crack structure from <2 nm to >100 nm.
    Type: Application
    Filed: April 6, 2021
    Publication date: August 5, 2021
    Applicant: Zedna AB
    Inventors: Valentin DUBOIS, Frank NIKLAUS, Göran STEMME
  • Publication number: 20200378902
    Abstract: Disclosed is a method of making a crack structure on a substrate, the crack structure being usable as a tunnelling junction structure in a nanogap device, including the controlled fracture or release of a patterned layer under built-in stress, thereby forming elements separated by nanogaps or crack-junctions. The width of the crack-defined nanogap is controlled by locally release-etching the film at a notched bridge patterned in the film. The built-in stress contributes to forming the crack and defining of the width of the crack-defined nanogap. Further, by design of the length of the bridge in a range between sub-??? to >25 ???, the separation between the elements, defined by the width of the crack-defined nanogaps, can be controlled for each individual crack structure from <2 nm to >100 nm. The nanogaps can be used for tunneling devices in combination with nanopores for DNA, RNA or peptides sequencing.
    Type: Application
    Filed: August 19, 2020
    Publication date: December 3, 2020
    Inventors: Valentin DUBOIS, Frank NIKLAUS, Göran STEMME
  • Patent number: 10782249
    Abstract: Disclosed is a method of making a crack structure on a substrate, the crack structure being usable as a tunneling junction structure in a nanogap device, including the controlled fracture or release of a patterned layer under built-in stress, thereby forming elements separated by nanogaps or crack-junctions. The width of the crack-defined nanogap is controlled by locally release-etching the film at a notched bridge patterned in the film. The built-in stress contributes to forming the crack and defining of the width of the crack-defined nanogap. Further, by design of the length of the bridge in a range between sub-??? to >25???, the separation between the elements, defined by the width of the crack-defined nanogaps, can be controlled for each individual crack structure from <2 nm to >100 nm. The nanogaps can be used for tunneling devices in combination with nanopores for DNA, RNA or peptides sequencing.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 22, 2020
    Assignee: ZEDNA AB
    Inventors: Valentin Dubois, Frank Niklaus, Göran Stemme
  • Publication number: 20180372653
    Abstract: Disclosed is a method of making a crack structure on a substrate, the crack structure being usable as a tunneling junction structure in a nanogap device, including the controlled fracture or release of a patterned layer under built-in stress, thereby forming elements separated by nanogaps or crack-junctions. The width of the crack-defined nanogap is controlled by locally release-etching the film at a notched bridge patterned in the film. The built-in stress contributes to forming the crack and defining of the width of the crack-defined nanogap. Further, by design of the length of the bridge in a range between sub-??? to >25???, the separation between the elements, defined by the width of the crack-defined nanogaps, can be controlled for each individual crack structure from <2 nm to >100 nm. The nanogaps can be used for tunneling devices in combination with nanopores for DNA, RNA or peptides sequencing.
    Type: Application
    Filed: December 14, 2016
    Publication date: December 27, 2018
    Inventors: Valentin DUBOIS, Frank NIKLAUS, Göran STEMME
  • Patent number: 10144649
    Abstract: A method for purifying solid borazane (NH3BH3 (s)) includes a) bringing solid borazane (NH3BH3 (s)) containing impurities into contact with a stream of gaseous ammonia (NH3 (g)) to obtain, by selective liquefaction of the borazane, a liquid phase containing liquefied borazane and ammonia and a solid phase constituted of at least a part of the impurities, b) separating the liquid and solid phases for recovery of the liquid phase, on the one hand, and of the solid phase, on the other hand; c) removing the ammonia from the recovered liquid phase, this removal causing precipitation of the purified borazane (NH3BH3 (s?)); and d) recovering the purified precipitated borazane (NH3BH3 (s?)).
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: December 4, 2018
    Assignee: ARIANEGROUP SAS
    Inventors: Nicolas Vandecandelaere, Valentin Dubois
  • Publication number: 20180257943
    Abstract: A method for purifying solid borazane (NH3BH3 (s)) includes a) bringing solid borazane (NH3BH3 (s)) containing impurities into contact with a stream of gaseous ammonia (NH3 (g)) to obtain, by selective liquefaction of the borazane, a liquid phase containing liquefied borazane and ammonia and a solid phase constituted of at least a part of the impurities, b) separating the liquid and solid phases for recovery of the liquid phase, on the one hand, and of the solid phase, on the other hand; c) removing the ammonia from the recovered liquid phase, this removal causing precipitation of the purified borazane (NH3BH3 (s)); and d) recovering the purified precipitated borazane (NH3BH3 (s?)).
    Type: Application
    Filed: September 16, 2016
    Publication date: September 13, 2018
    Inventors: Nicolas VANDECANDELAERE, Valentin DUBOIS