Patents by Inventor Valentin N. Todorow

Valentin N. Todorow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160254123
    Abstract: A shielded lid heater lid heater suitable for use with a plasma processing chamber, a plasma processing chamber having a shielded lid heater and a method for plasma processing are provided. The method and apparatus enhances positional control of plasma location within a plasma processing chamber, and may be utilized in etch, deposition, implant, and thermal processing systems, among other applications where the control of plasma location is desirable. In one embodiment, a process for tuning a plasma processing chamber is provided that include determining a position of a plasma within the processing chamber, selecting an inductance and/or position of an inductor coil coupled to a lid heater that shifts the plasma location from the determined position to a target position, and plasma processing a substrate with the inductor coil having the selected inductance and/or position.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Michael D. WILLWERTH, David PALAGASHVILI, Valentin N. TODOROW, Stephen YUEN
  • Publication number: 20160196953
    Abstract: Methods and apparatus for plasma processing are provided herein. In some embodiments, a plasma processing apparatus includes a process chamber having an interior processing volume; a first RF coil disposed proximate the process chamber to couple RF energy into the processing volume; and a second RF coil disposed proximate the process chamber to couple RF energy into the processing volume, the second RF coil disposed coaxially with respect to the first RF coil, wherein the first and second RF coils are configured such that RF current flowing through the first RF coil is out of phase with RF current flowing through the RF second coil.
    Type: Application
    Filed: March 15, 2016
    Publication date: July 7, 2016
    Inventors: VALENTIN N. TODOROW, SAMER BANNA, ANKUR AGARWAL, ZHIGANG CHEN, TSE-CHIANG WANG, ANDREW NGUYEN, MARTIN JEFF SALINAS, SHAHID RAUF
  • Patent number: 9378930
    Abstract: Embodiments of the present invention generally provide an inductively coupled plasma (ICP) reactor having a substrate RF bias that is capable of control of the RF phase difference between the ICP source (a first RF source) and the substrate bias (a second RF source) for plasma processing reactors used in the semiconductor industry. Control of the RF phase difference provides a powerful knob for fine process tuning. For example, control of the RF phase difference may be used to control one or more of average etch rate, etch rate uniformity, etch rate skew, critical dimension (CD) uniformity, and CD skew, CD range, self DC bias control, and chamber matching.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: June 28, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael N. Grimbergen, Alan Hiroshi Ouye, Valentin N. Todorow
  • Patent number: 9362148
    Abstract: A shielded lid heater lid heater suitable for use with a plasma processing chamber, a plasma processing chamber having a shielded lid heater and a method for plasma processing are provided. The method and apparatus enhances positional control of plasma location within a plasma processing chamber, and may be utilized in etch, deposition, implant, and thermal processing systems, among other applications where the control of plasma location is desirable. In one embodiment, a shielded lid heater is provided that includes an aluminum base and RF shield sandwiching a heater element.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: June 7, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael D. Willwerth, David Palagashvili, Valentin N. Todorow, Stephen Yuen
  • Publication number: 20150294843
    Abstract: Embodiments of the present invention generally provide chamber cleaning methods for cleaning a plasma processing chamber with minimum likelihood of erosion occurred on the chamber components so as to extend service life of chamber components for semiconductor plasma applications. In one embodiment, a method of extending chamber component life in a processing chamber includes supplying a cleaning gas mixture into a plasma processing chamber, applying a RF source power to the plasma processing chamber, and applying a voltage to a substrate support assembly disposed in the processing chamber during cleaning.
    Type: Application
    Filed: April 9, 2014
    Publication date: October 15, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Feng CHEN, Benjamin SCHWARZ, Valentin N. TODOROW, Li ZHANG, Tza-Jing GUNG, Lu LIU
  • Publication number: 20150279634
    Abstract: Embodiments of the invention generally provide a cooling mechanism utilized in a plasma reactor that may provide efficient temperature control during a plasma process. In one embodiment, a cooling mechanism disposed in a plasma processing apparatus includes a coil antenna enclosure formed in a processing chamber, a coil antenna assembly disposed in the coil antenna enclosure, a plurality of air circulating elements disposed in the coil antenna enclosure adjacent to the coil antenna assembly, and a baffle plate disposed in the coil antenna enclosure below and adjacent to the coil antenna assembly.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Aniruddha PAL, Victor CALDERON, Martin Jeffrey SALINAS, Valentin N. TODOROW
  • Publication number: 20150221481
    Abstract: Electrostatic chucks with magnetic cathode liners for critical dimension (CD) tuning are described. For example, an electrostatic chuck (ESC) includes a cathode region. A wafer processing region is disposed above the cathode region. A magnetic cathode liner surrounds the cathode region, below the wafer processing region. The magnetic cathode liner is configured to provide magnetic field tuning capability for the ESC.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 6, 2015
    Inventors: Michael D. Willwerth, Chih-Hsun Hsu, Valentin N. Todorow
  • Publication number: 20150068682
    Abstract: Embodiments of inductively coupled plasma (ICP) reactors are provided herein. In some embodiments, a dielectric window for an inductively coupled plasma reactor includes: a body including a first side, a second side opposite the first side, an edge, and a center, wherein the dielectric window has a dielectric coefficient that varies spatially. In some embodiments, an apparatus for processing a substrate includes: a process chamber having a processing volume disposed beneath a lid of the process chamber; and one or more inductive coils disposed above the lid to inductively couple RF energy into and to form a plasma in the processing volume above a substrate support disposed within the processing volume; wherein the lid is a dielectric window comprising a first side and an opposing second side that faces the processing volume, and wherein the lid has a dielectric coefficient that spatially varies to provide a varied power coupling of RF energy from the one or more inductive coils to the processing volume.
    Type: Application
    Filed: August 19, 2014
    Publication date: March 12, 2015
    Inventors: SAMER BANNA, TZA-JING GUNG, VLADIMIR KNYAZIK, KYLE TANTIWONG, DAN A. MAROHL, VALENTIN N. TODOROW, STEPHEN YUEN
  • Publication number: 20140367046
    Abstract: Embodiments of an apparatus having an improved coil antenna assembly that can provide enhanced plasma in a processing chamber is provided. The improved coil antenna assembly enhances positional control of plasma location within a plasma processing chamber, and may be utilized in etch, deposition, implant, and thermal processing systems, among other applications where the control of plasma location is desirable. In one embodiment, an electrode assembly configured to use in a semiconductor processing apparatus includes a RF conductive connector, and a conductive member having a first end electrically connected to the RF conductive connector, wherein the conductive member extends outward and vertically from the RF conductive connector.
    Type: Application
    Filed: June 2, 2014
    Publication date: December 18, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Valentin N. TODOROW, Gary LERAY, Michael D. WILLWERTH, Li-Sheng CHIANG
  • Publication number: 20140345803
    Abstract: A method and apparatus for etching a substrate using a spatially modified plasma is provided herein. In one embodiment, the method includes providing a process chamber having a plasma stabilizer disposed above a substrate support pedestal. A substrate is placed upon the pedestal. A process gas is introduced into the process chamber and a plasma is formed from the process gas. The substrate is etched with a plasma having an ion density to radical density ratio defined by the plasma stabilizer.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Valentin N. TODOROW, John P. HOLLAND, Michael D. WILLWERTH
  • Patent number: 8801896
    Abstract: A method and apparatus for etching a substrate using a spatially modified plasma is provided herein. In one embodiment, the method includes providing a process chamber having a plasma stabilizer disposed above a substrate support pedestal. A substrate is placed upon the pedestal. A process gas is introduced into the process chamber and a plasma is formed from the process gas. The substrate is etched with a plasma having an ion density to radical density ratio defined by the plasma stabilizer.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: August 12, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Valentin N. Todorow, John P. Holland, Michael D. Willwerth
  • Patent number: 8773020
    Abstract: Apparatus for forming a magnetic field and methods of use thereof are provided herein. In some embodiments, a plurality of coils having substantially similar dimensions disposed about a process chamber in a symmetric pattern centered about a central axis of the process chamber, wherein the plurality of coils are configured to produce a magnetic field having a plurality of magnetic field lines that are substantially planar and substantially parallel. In some embodiments, the plurality of coils comprises eight coils disposed about the process chamber, wherein each of the eight coils is offset by an angle of about 45 degrees from respective adjacent coils of the eight coils.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: July 8, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Gary Leray, Shahid Rauf, Valentin N. Todorow
  • Publication number: 20140151331
    Abstract: Methods and apparatus for plasma processing of substrates are provided herein. In some embodiments, a deposition shield for use in processing a substrate having a given width may include a first plate having a first plurality of holes disposed through a thickness of the first plate; and a second plate disposed below the first plate and having a second plurality of holes disposed through a thickness of the second plate, wherein individual holes in the first plurality of holes and the second plurality of holes are not aligned.
    Type: Application
    Filed: February 27, 2013
    Publication date: June 5, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: VALENTIN N. TODOROW, MICHAEL D. WILLWERTH, YING-SHENG LIN, DAVID PALAGASHVILI
  • Publication number: 20130189848
    Abstract: A shielded lid heater lid heater suitable for use with a plasma processing chamber, a plasma processing chamber having a shielded lid heater and a method for plasma processing are provided. The method and apparatus enhances positional control of plasma location within a plasma processing chamber, and may be utilized in etch, deposition, implant, and thermal processing systems, among other applications where the control of plasma location is desirable. In one embodiment, a shielded lid heater is provided that includes an aluminum base and RF shield sandwiching a heater element.
    Type: Application
    Filed: March 11, 2013
    Publication date: July 25, 2013
    Inventors: Michael D. WILLWERTH, David PALAGASHVILI, Valentin N. TODOROW, Stephen YUEN
  • Patent number: 8492980
    Abstract: Methods for calibrating RF power applied to a plurality of RF coils are provided. In some embodiments, a method of calibrating RF power applied to a first and second RF coil of a process chamber having a power divider to control a first ratio equal to a first magnitude of RF power provided to the first RF coil divided by a second magnitude of RF power provided to the second RF coil, may include measuring a plurality of first ratios over a range of setpoint values of the power divider, comparing the plurality of measured first ratios to a plurality of reference first ratios, and adjusting an actual value of the power divider at a given setpoint value such that the first ratio of the power divider at the given setpoint matches the corresponding reference first ratio to within a first tolerance level.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: July 23, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Samer Banna, Valentin N. Todorow, Tse-Chiang Wang, Xing Lin
  • Publication number: 20130118687
    Abstract: A method and apparatus for etching a substrate using a spatially modified plasma is provided herein. In one embodiment, the method includes providing a process chamber having a plasma stabilizer disposed above a substrate support pedestal. A substrate is placed upon the pedestal. A process gas is introduced into the process chamber and a plasma is formed from the process gas. The substrate is etched with a plasma having an ion density to radical density ratio defined by the plasma stabilizer.
    Type: Application
    Filed: January 4, 2013
    Publication date: May 16, 2013
    Inventors: VALENTIN N. TODOROW, John P. Holland, Michael D. Willwerth
  • Patent number: 8419893
    Abstract: A shielded lid heater lid heater suitable for use with a plasma processing chamber, a plasma processing chamber having a shielded lid heater and a method for plasma processing are provided. The method and apparatus enhances positional control of plasma location within a plasma processing chamber, and may be utilized in etch, deposition, implant, and thermal processing systems, among other applications where the control of plasma location is desirable. In one embodiment, a shielded lid heater is provided that includes an aluminum base and RF shield sandwiching a heater element.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 16, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Michael D. Willwerth, David Palagashvili, Valentin N. Todorow, Stephen Yuen
  • Patent number: 8383002
    Abstract: The disclosure concerns a method of processing a workpiece or in a plasma reactor chamber, using independent gas injection at the wafer edge.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dan Katz, David Palagashvili, Michael D. Willwerth, Valentin N. Todorow, Alexander M. Paterson
  • Patent number: 8368308
    Abstract: Embodiments of the present invention generally provide an inductively coupled plasma (ICP) reactor having a substrate RF bias that is capable of control of the RF phase difference between the ICP source (a first RF source) and the substrate bias (a second RF source) for plasma processing reactors used in the semiconductor industry. Control of the RF phase difference provides a powerful knob for fine process tuning. For example, control of the RF phase difference may be used to control one or more of average etch rate, etch rate uniformity, etch rate skew, critical dimension (CD) uniformity, and CD skew, CD range, self DC bias control, and chamber matching.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: February 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Samer Banna, Valentin N. Todorow
  • Patent number: 8360003
    Abstract: In a plasma reactor having an RF plasma source power applicator at its ceiling, an integrally formed grid liner includes a radially extending plasma confinement ring and an axially extending side wall liner. The plasma confinement ring extends radially outwardly near the plane of a workpiece support surface from a pedestal side wall, and includes an annular array of radial slots, each of the slots having a narrow width corresponding to an ion collision mean free path length of a plasma in the chamber. The side wall liner covers an interior surface of the chamber side wall and extends axially from a height near a height of said workpiece support surface to the chamber ceiling.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: January 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Nguyen, Hiroji Hanawa, Kartik Ramaswamy, Samer Banna, Anchel Sheyner, Valentin N. Todorow