Patents by Inventor Valeri Yu. Dolmatov

Valeri Yu. Dolmatov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8172916
    Abstract: An aqueous suspension liquid of finely divided diamond particles comprising 0.05 to 160 parts by weight of a finely divided diamond particles in 1000 parts of water, wherein; (i) the finely divided diamond particles have an element composition consisting mainly of 72 to 89.5% by weight of carbon, 0.8 to 1.5% of hydrogen, 1.5 to 2.5% of nitrogen, and 10.5 to 25.0% of oxygen; (ii) and, almost all of said diamond particles are in the range of 2 mu to 50 nm in diameters thereof (80% or more by number average, 70% or more by weight average), (iii) and, said finely divided diamond particles exhibit a strongest peak of the intensity of the Bragg angle at 43.9° (20±20), strong and characteristic peaks at 73.5° (20±20) and 95° (20±2°), a warped halo at 17? (20±2?), and no peak at 26.5°, by X-ray diffraction (XRD) spectrum analysis using Cu-Ku radiation when dried, (iv) and, specific surface area of said diamond particles when dry state powder is not smaller than 1.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: May 8, 2012
    Inventors: Tadamasa Fujimura, Masato Sone, Valeri Yu Dolmatov, Shigeru Shiozaki
  • Publication number: 20110209642
    Abstract: An aqueous suspension liquid of finely divided diamond particles comprising 0.05 to 160 parts by weight of a finely divided diamond particles in 1000 parts of water, wherein; (i) the finely divided diamond particles have an element composition consisting mainly of 72 to 89.5% by weight of carbon, 0.8 to 1.5% of hydrogen, 1.5 to 2.5% of nitrogen, and 10.5 to 25.0% of oxygen; (ii) and, almost all of said diamond particles are in the range of 2 mu to 50 nm in diameters thereof (80% or more by number average, 70% or more by weight average), (iii) and, said finely divided diamond particles exhibit a strongest peak of the intensity of the Bragg angle at 43.9° (20±20), strong and characteristic peaks at 73.5° (20±20) and 95° (20±2°), a warped halo at 17?(20±2?), and no peak at 26.5°, by X-ray diffraction (XRD) spectrum analysis using Cu-Ku radiation when dried, (iv) and, specific surface area of said diamond particles when dry state powder is not smaller than 1.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 1, 2011
    Inventors: Tadamasa Fujimura, Masato Sone, Valeri Yu Dolmatov, Shigeru Shiozaki
  • Patent number: 7927390
    Abstract: An aqueous suspension liquid of finely divided diamond particles comprising 0.05 to 160 parts by weight of a finely divided diamond particles in 1000 parts of water, wherein; (i) the finely divided diamond particles have an element composition consisting mainly of 72 to 89.5% by weight of carbon, 0.8 to 1.5% of hydrogen, 1.5 to 2.5% of nitrogen, and 10.5 to 25.0% of oxygen; (ii) and, almost all of said diamond particles are in the range of 2 nm to 50 nm in diameters thereof (80% or more by number average, 70% or more by weight average), (iii) and, said finely divided diamond particles exhibit a strongest peak of the intensity of the Bragg angle at 43.9° (2?±2°), strong and characteristic peaks at 73.5° (2?±2°) and 95° (2?±2°), a warped halo at 17° (2?±2°), and no peak at 26.5°, by X-ray diffraction (XRD) spectrum analysis using Cu—K? radiation when dried, (iv) and, specific surface area of said diamond particles when dry state powder is not smaller than 1.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: April 19, 2011
    Assignee: Tadamasa FUJIMURA
    Inventors: Tadamasa Fujimura, Masato Sone, Valeri Yu Dolmatov, Shigeru Shiozaki
  • Publication number: 20100069513
    Abstract: An aqueous suspension liquid of finely divided diamond particles comprising 0.05 to 160 parts by weight of a finely divided diamond particles in 1000 parts of water, wherein; (i) the finely divided diamond particles have an element composition consisting mainly of 72 to 89.5% by weight of carbon, 0.8 to 1.5% of hydrogen, 1.5 to 2.5% of nitrogen, and 10.5 to 25.0% of oxygen; (ii) and, almost all of said diamond particles are in the range of 2 nm to 50 nm in diameters thereof (80% or more by number average, 70% or more by weight average), (iii) and, said finely divided diamond particles exhibit a strongest peak of the intensity of the Bragg angle at 43.9° (2?±2°), strong and characteristic peaks at 73.5° (2?±2°) and 95° (2?±2°), a warped halo at 17° (2?±2°), and no peak at 26.5°, by X-ray diffraction (XRD) spectrum analysis using Cu-K? radiation when dried, (iv) and, specific surface area of said diamond particles when dry state powder is not smaller than 1.
    Type: Application
    Filed: August 3, 2009
    Publication date: March 18, 2010
    Inventors: Tadamasa Fujimura, Masato Sone, Valeri Yu Dolmatov, Shigeru Shiozaki
  • Patent number: 7585360
    Abstract: An aqueous suspension liquid of finely divided diamond particles comprising 0.05 to 160 parts by weight of a finely divided diamond particles in 1000 parts of water, wherein; (i) the finely divided diamond particles have an element composition consisting mainly of 72 to 89.5% by weight of carbon, 0.8 to 1.5% of hydrogen, 1.5 to 2.5% of nitrogen, and 10.5 to 25.0% of oxygen; (ii) and, almost all of said diamond particles are in the range of 2 nm to 50 nm in diameters thereof (80% or more by number average, 70% or more by weight average), (iii) and, said finely divided diamond particles exhibit a strongest peak of the intensity of the Bragg angle at 43.9° (2?±2°), strong and characteristic peaks at 73.5° (2?±2°)and 95° (2?±2°), a warped halo at 17° (2?±2°), and no peak at 26.5°, by X-ray diffraction (XRD) spectrum analysis using Cu—K? radiation when dried, (iv) and, specific surface area of said diamond particles when dry state powder is not smaller than 1.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: September 8, 2009
    Inventors: Tadamasa Fujimura, Masato Sone, Valeri Yu Dolmatov, Shigeru Shiozaki
  • Patent number: 7115325
    Abstract: An aqueous suspension liquid of finely divided diamond particles comprising 0.05 to 160 parts by weight of a finely divided diamond particles in 1000 parts of water, wherein; (i) the finely divided diamond particles have an element composition consisting mainly of 72 to 89.5% by weight of carbon, 0.8 to 1.5% of hydrogen, 1.5 to 2.5% of nitrogen, and 10.5 to 25.0% of oxygen; (ii) and, almost all of said diamond particles are in the range of 2 nm to 50 nm in diameters thereof (80% or more by number average, 70% or more by weight average), (iii) and, said finely divided diamond particles exhibit a strongest peak of the intensity of the Bragg angle at 43.9° (2?±2°), strong and characteristic peaks at 73.5° (2?±2°)and 95° (2?±2°), a warped halo at 17° (2?±2°), and no peak at 26.5°, by X-ray diffraction (XRD) spectrum analysis using Cu-K? radiation when dried, (iv) and, specific surface area of said diamond particles when dry state powder is not smaller than 1.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: October 3, 2006
    Inventors: Tadamasa Fujimura, Masato Sone, Valeri Yu. Dolmatov, Shigeru Shiozaki
  • Publication number: 20030228249
    Abstract: n aqueous suspension liquid of finely divided diamond particles comprising 0.05 to 160 parts by weight of a finely divided diamond particles in 1000 parts of water, wherein; (i) the finely divided diamond particles have an element composition consisting mainly of 72 to 89.5% by weight of carbon, 0.8 to 1.5% of hydrogen, 1.5 to 2.5% of nitrogen, and 10.5 to 25.0% of oxygen; (ii) and, almost all of said diamond particles are in the range of 2 nm to 50 nm in diameters thereof (80% or more by number average, 70% or more by weight average), (iii) and, said finely divided diamond particles exhibit a strongest peak of the intensity of the Bragg angle at 43.9° (2&thgr;±2°), strong and characteristic peaks at 73.5° (2&thgr;±2°)and 95° (2&thgr;±2°), a warped halo at 17°(2&thgr;±2°), and no peak at 26.
    Type: Application
    Filed: August 30, 2002
    Publication date: December 11, 2003
    Inventors: Tadamasa Fujimura, Masato Sone, Valeri Yu Dolmatov, Shigeru Shiozaki