Patents by Inventor Valeria Casuscelli

Valeria Casuscelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220332650
    Abstract: The present disclosure relates to a method for the preparation of a precursor solution for a ceramic of the BZT-aBXT type wherein X is selected from Ca, Sn, Mn and Nb and a is a molar fraction selected in the range between 0.10 and 0.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 20, 2022
    Applicant: STMicroelectronics S.R.L.
    Inventors: Valeria CASUSCELLI, Rossana SCALDAFERRI, Paola Sabrina BARBATO
  • Patent number: 11417827
    Abstract: A MEMS piezoelectric device includes a monolithic semiconductor body having first and second main surfaces extending parallel to a horizontal plane formed by first and second horizontal axes. A housing cavity is arranged within the monolithic semiconductor body. A membrane is suspended above the housing cavity at the first main surface. A piezoelectric material layer is arranged above a first surface of the membrane with a proof mass coupled to a second surface, opposite to the first surface, along the vertical axis. An electrode arrangement is provided in contact with the piezoelectric material layer. The proof mass causes deformation of the piezoelectric material layer in response to environmental mechanical vibrations. The proof mass is coupled to the membrane by a connection element arranged, in a central position, between the membrane and the proof mass in the direction of the vertical axis.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: August 16, 2022
    Assignee: STMicroelectronics S.r.l.
    Inventors: Maria Fortuna Bevilacqua, Flavio Francesco Villa, Rossana Scaldaferri, Valeria Casuscelli, Andrea Di Matteo, Dino Faralli
  • Publication number: 20220246832
    Abstract: A MEMS piezoelectric device includes a monolithic semiconductor body having first and second main surfaces extending parallel to a horizontal plane formed by first and second horizontal axes. A housing cavity is arranged within the monolithic semiconductor body. A membrane is suspended above the housing cavity at the first main surface. A piezoelectric material layer is arranged above a first surface of the membrane with a proof mass coupled to a second surface, opposite to the first surface, along the vertical axis. An electrode arrangement is provided in contact with the piezoelectric material layer. The proof mass causes deformation of the piezoelectric material layer in response to environmental mechanical vibrations. The proof mass is coupled to the membrane by a connection element arranged, in a central position, between the membrane and the proof mass in the direction of the vertical axis.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Applicant: STMicroelectronics S.r.l.
    Inventors: Maria Fortuna BEVILACQUA, Flavio Francesco VILLA, Rossana SCALDAFERRI, Valeria CASUSCELLI, Andrea DI MATTEO, Dino FARALLI
  • Patent number: 10696597
    Abstract: The present disclosure relates to a precursor solution for the preparation of a ceramic of the BZT-?BXT type, where X is selected from Ca, Sn, Mn, and Nb, and ? is a molar fraction selected in the range between 0.10 and 0.90, said solution comprising: 1) at least one barium precursor compound; 2) a precursor compound selected from the group consisting of at least one calcium compound, at least one tin compound, at least one manganese compound, and at least one niobium compound; 3) at least one anhydrous precursor compound of zirconium; 4) at least one anhydrous precursor compound of titanium; 5) a solvent selected from the group consisting of a polyol and mixtures of a polyol and a secondary solvent selected from the group consisting of alcohols, carboxylic acids, esters, ketones, ethers, and mixtures thereof; and 6) a chelating agent, as well as method of using the same.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: June 30, 2020
    Assignee: STMicroelectronics S.R.L.
    Inventors: Angela Cimmino, Giovanna Salzillo, Valeria Casuscelli, Andrea Di Matteo
  • Patent number: 10429335
    Abstract: It is described an integrated gas sensor device comprising a silicon substrate and an oxide layer on the silicon substrate, as well as a working electrode, a counter electrode and a reference electrode, on the oxide layer, the working electrode and the counter electrode having respective active area exposed to an environmental air through at least a plurality of first openings and a plurality of second openings in the oxide layer in correspondence of the working electrode and of the counter electrode, further comprising an electrolyte layer portion and a hydrogel layer portion on the electrolyte layer portion, the electrolyte and hydrogel layer portions having a same size, suitable to cover at least the working, counter and reference electrodes, the hydrogel layer portion acting as a “quasi solid state” water reservoir.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: October 1, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Fabrizio Porro, Valeria Casuscelli, Francesco Foncellino, Giovanna Salzillo, Luigi Giuseppe Occhipinti
  • Publication number: 20190115524
    Abstract: A MEMS piezoelectric device includes a monolithic semiconductor body having first and second main surfaces extending parallel to a horizontal plane formed by first and second horizontal axes. A housing cavity is arranged within the monolithic semiconductor body. A membrane is suspended above the housing cavity at the first main surface. A piezoelectric material layer is arranged above a first surface of the membrane with a proof mass coupled to a second surface, opposite to the first surface, along the vertical axis. An electrode arrangement is provided in contact with the piezoelectric material layer. The proof mass causes deformation of the piezoelectric material layer in response to environmental mechanical vibrations. The proof mass is coupled to the membrane by a connection element arranged, in a central position, between the membrane and the proof mass in the direction of the vertical axis.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 18, 2019
    Applicant: STMicroelectronics S.r.l.
    Inventors: Maria Fortuna BEVILACQUA, Flavio Francesco VILLA, Rossana SCALDAFERRI, Valeria CASUSCELLI, Andrea DI MATTEO, Dino FARALLI
  • Patent number: 10186654
    Abstract: A MEMS piezoelectric device includes a monolithic semiconductor body having first and second main surfaces extending parallel to a horizontal plane formed by first and second horizontal axes. A housing cavity is arranged within the monolithic semiconductor body. A membrane is suspended above the housing cavity at the first main surface. A piezoelectric material layer is arranged above a first surface of the membrane with a proof mass coupled to a second surface, opposite to the first surface, along the vertical axis. An electrode arrangement is provided in contact with the piezoelectric material layer. The proof mass causes deformation of the piezoelectric material layer in response to environmental mechanical vibrations. The proof mass is coupled to the membrane by a connection element arranged, in a central position, between the membrane and the proof mass in the direction of the vertical axis.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: January 22, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Maria Fortuna Bevilacqua, Flavio Francesco Villa, Rossana Scaldaferri, Valeria Casuscelli, Andrea Di Matteo, Dino Faralli
  • Publication number: 20170322170
    Abstract: It is described an integrated gas sensor device comprising a silicon substrate and an oxide layer on the silicon substrate, as well as a working electrode, a counter electrode and a reference electrode, on the oxide layer, the working electrode and the counter electrode having respective active area exposed to an environmental air through at least a plurality of first openings and a plurality of second openings in the oxide layer in correspondence of the working electrode and of the counter electrode, further comprising an electrolyte layer portion and a hydrogel layer portion on the electrolyte layer portion, the electrolyte and hydrogel layer portions having a same size, suitable to cover at least the working, counter and reference electrodes, the hydrogel layer portion acting as a “quasi solid state” water reservoir.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Inventors: Fabrizio Porro, Valeria Casuscelli, Francesco Foncellino, Giovanna Salzillo, Luigi Giuseppe Occhipinti
  • Patent number: 9746439
    Abstract: It is described an integrated gas sensor device comprising a silicon substrate and an oxide layer on the silicon substrate, as well as a working electrode, a counter electrode and a reference electrode, on the oxide layer, the working electrode and the counter electrode having respective active area exposed to an environmental air through at least a plurality of first openings and a plurality of second openings in the oxide layer in correspondence of the working electrode and of the counter electrode, further comprising an electrolyte layer portion and a hydrogel layer portion on the electrolyte layer portion, the electrolyte and hydrogel layer portions having a same size, suitable to cover at least the working, counter and reference electrodes, the hydrogel layer portion acting as a “quasi solid state” water reservoir.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: August 29, 2017
    Assignee: STMicroelectronics S.r.l.
    Inventors: Fabrizio Porro, Valeria Casuscelli, Francesco Foncellino, Giovanna Salzillo, Luigi Giuseppe Occhipinti
  • Publication number: 20170236994
    Abstract: The present disclosure relates to a precursor solution for the preparation of a ceramic of the BZT-?BXT type, where X is selected from Ca, Sn, Mn, and Nb, and ? is a molar fraction selected in the range between 0.10 and 0.90, said solution comprising: 1) at least one barium precursor compound; 2) a precursor compound selected from the group consisting of at least one calcium compound, at least one tin compound, at least one manganese compound, and at least one niobium compound; 3) at least one anhydrous precursor compound of zirconium; 4) at least one anhydrous precursor compound of titanium; 5) a solvent selected from the group consisting of a polyol and mixtures of a polyol and a secondary solvent selected from the group consisting of alcohols, carboxylic acids, ketones, and mixtures thereof; and 6) a chelating agent, as well as method of using the same.
    Type: Application
    Filed: April 28, 2017
    Publication date: August 17, 2017
    Inventors: Angela Cimmino, Giovanna Salzillo, Valeria Casuscelli, Andrea Di Matteo
  • Publication number: 20170186940
    Abstract: A MEMS piezoelectric device includes a monolithic semiconductor body having first and second main surfaces extending parallel to a horizontal plane formed by first and second horizontal axes. A housing cavity is arranged within the monolithic semiconductor body. A membrane is suspended above the housing cavity at the first main surface. A piezoelectric material layer is arranged above a first surface of the membrane with a proof mass coupled to a second surface, opposite to the first surface, along the vertical axis. An electrode arrangement is provided in contact with the piezoelectric material layer. The proof mass causes deformation of the piezoelectric material layer in response to environmental mechanical vibrations. The proof mass is coupled to the membrane by a connection element arranged, in a central position, between the membrane and the proof mass in the direction of the vertical axis.
    Type: Application
    Filed: May 24, 2016
    Publication date: June 29, 2017
    Applicant: STMicroelectronics S.r.l.
    Inventors: Maria Fortuna Bevilacqua, Flavio Francesco Villa, Rossana Scaldaferri, Valeria Casuscelli, Andrea Di Matteo, Dino Faralli
  • Publication number: 20170152186
    Abstract: The present disclosure relates to a precursor solution for the preparation of a ceramic of the BZT-?BXT type, where X is selected from Ca, Sn, Mn, and Nb, and a is a molar fraction selected in the range between 0.10 and 0.90, said solution comprising: 1) at least one barium precursor compound; 2) a precursor compound selected from the group consisting of at least one calcium compound, at least one tin compound, at least one manganese compound, and at least one niobium compound; 3) at least one anhydrous precursor compound of zirconium; 4) at least one anhydrous precursor compound of titanium; 5) a solvent selected from the group consisting of a polyol and mixtures of a polyol and a secondary solvent selected from the group consisting of alcohols, carboxylic acids, esters, ketones, ethers, and mixtures thereof; and 6) a chelating agent, as well as method of using the same.
    Type: Application
    Filed: June 24, 2016
    Publication date: June 1, 2017
    Inventors: Angela Cimmino, Giovanna Salzillo, Valeria Casuscelli, Andrea Di Matteo
  • Patent number: 9588075
    Abstract: The present disclosure relates to a sensor for detecting hydrogen ions in an aqueous solution comprising a support, a reference electrode, a working electrode and a counter electrode supported by said support, the reference electrode being made of a material comprising silver and silver chloride, the counter electrode being made of a conductive material. The working electrode comprises a substrate and a layer made of an inherently electrically conductive polymer of the polythiophene or polyaniline (PANI) or polypyrrole class.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 7, 2017
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Giovanna Salzillo, Rossana Scaldaferri, Valeria Casuscelli, Luigi Giuseppe Occhipinti
  • Publication number: 20170033272
    Abstract: A method is for making a thermoelectric generator device. The method may include forming bottom contacts on a first substrate, and forming a polymer layer over the first substrate with recesses therein, the recesses being over the bottom contacts. The method may include forming a semiconductor material fluid in the recesses of the polymer layer to define thermoelectric couples coupled to the bottom contacts, forming top contacts adjacent a second substrate, and positioning the second substrate so that the top contacts are coupled to the thermoelectric couples.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 2, 2017
    Inventors: Immacolata PEDACI, Angela CIMMINO, Valeria CASUSCELLI, Giampiero PEPE
  • Patent number: 9012259
    Abstract: The present disclosure describes a process strategy for forming bottom gate/bottom contact organic TFTs in CMOS technology by using a hybrid deposition/patterning regime. To this end, gate electrodes, gate dielectric materials and drain and source electrodes are formed on the basis of lithography processes, while the organic semiconductor materials are provided as the last layers by using a spatially selective printing process.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: April 21, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Francesco Foncellino, Giovanna Salzillo, Valeria Casuscelli, Luigi Giuseppe Occhipinti
  • Publication number: 20150001076
    Abstract: It is described an integrated gas sensor device comprising a silicon substrate and an oxide layer on the silicon substrate, as well as a working electrode, a counter electrode and a reference electrode, on the oxide layer, the working electrode and the counter electrode having respective active area exposed to an environmental air through at least a plurality of first openings and a plurality of second openings in the oxide layer in correspondence of the working electrode and of the counter electrode, further comprising an electrolyte layer portion and a hydrogel layer portion on the electrolyte layer portion, the electrolyte and hydrogel layer portions having a same size, suitable to cover at least the working, counter and reference electrodes, the hydrogel layer portion acting as a “quasi solid state” water reservoir.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: Fabrizio Porro, Valeria Casuscelli, Francesco Foncellino, Giovanna Salzillo, Luigi Giuseppe Occhipinti
  • Publication number: 20140251805
    Abstract: The present disclosure relates to a sensor for detecting hydrogen ions in an aqueous solution comprising a support, a reference electrode, a working electrode and a counter electrode supported by said support, the reference electrode being made of a material comprising silver and silver chloride, the counter electrode being made of a conductive material. The working electrode comprises a substrate and a layer made of an inherently electrically conductive polymer of the polythiophene or polyaniline (PANI) or polypyrrole class.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventors: Giovanna Salzillo, Rossana Scaldaferri, Valeria Casuscelli, Luigi Giuseppe Occhipinti
  • Publication number: 20140199807
    Abstract: The present disclosure describes a process strategy for forming bottom gate/bottom contact organic TFTs in CMOS technology by using a hybrid deposition/patterning regime. To this end, gate electrodes, gate dielectric materials and drain and source electrodes are formed on the basis of lithography processes, while the organic semiconductor materials are provided as the last layers by using a spatially selective printing process.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 17, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventors: Francesco Foncellino, Giovanna Salzillo, Valeria Casuscelli, Luigi Giuseppe Occhipinti
  • Publication number: 20140084519
    Abstract: The present disclosure relates to mold components and imprint lithography techniques applied on the basis of organic mold materials in order to form polymer microstructure elements. It has been recognized that adapting surface characteristics of at least one mold component may significantly enhance performance of the lithography process, in particular with respect to suppressing residual polymer material, which in conventional strategies may have to be removed on the basis of an additional etch process.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 27, 2014
    Applicants: Fondazione Istituto Italiano di Tecnologia, STMicroelectronics S.r.l.
    Inventors: Fabrizio Porro, Antonio Scognamiglio, Raffaele Vecchione, Valeria Casuscelli, Andrea Di Matteo, Luigi Giuseppe Occhipinti, Paolo Netti
  • Patent number: 7976745
    Abstract: The present invention relates to a process for the preparation of a composite polymeric material containing nanometric inorganic inclusions comprising the steps of: mixing a polymer with a thermolytic precursor to provide a homogeneous dispersion of said at least one precursor and of said at least one polymer; subjecting said homogeneous dispersion to heating to provide a molten polymer and thermolytic fission of the precursor, generating the inclusions dispersed in the molten polymer.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: July 12, 2011
    Assignees: STMicroelectronics S.r.l., Universita degli Studi di Napoli Federico II
    Inventors: Raffaele Vecchione, Gianfranco Carotenuto, Valeria Casuscelli, Floriana Esposito, Salvatore Leonardi, Luigi Nicolais, Maria Viviana Volpe