Patents by Inventor Valerie A. Finnemeyer

Valerie A. Finnemeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200174323
    Abstract: A method for producing a photostable reactive mesogen alignment layer includes infusing an anisotropic dye into a microcavity so as to coat the an surface of the microcavity with the anisotropic dye; illuminating the anisotropic dye with polarized light so as to form an anisotropic dye layer aligned with respect to the inner surface of the microcavity; infusing a reactive mesogen and the liquid crystal material into the microcavity; illuminating the reactive mesogen at a wavelength selected to cause polymerization of the layer of the reactive mesogen so as to form a polymerized reactive mesogen layer; aligning the liquid crystal material with respect to the anisotropic dye layer; and bleaching the anisotropic dye layer.
    Type: Application
    Filed: May 21, 2018
    Publication date: June 4, 2020
    Applicants: Kent State University, Massachusetts Institute of Technology
    Inventors: Colin McGinty, Philip J. Bos, Valerie A. Finnemeyer, Robert K. Reich, Harry R. Clark, Shaun R. Berry
  • Patent number: 10459293
    Abstract: Liquid crystal photonic devices and microcavities filled with liquid crystal materials are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. Previous research on photo-definable alignment layers has shown that they have limited stability, particularly against subsequent light exposure. A method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer is described, along with a method of utilizing a pre-polymer infused into the microcavity mixed with the liquid crystal to provide photostability. In this method, the polymer layer, formed under optical irradiation of liquid crystal cells, is effectively localized to a thin region near the substrate surface and thus provides a significant improvement in the photostability of the liquid crystal alignment.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: October 29, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Valerie A. Finnemeyer, Robert K. Reich, Harry R. Clark, Carl O. Bozler, Shaun R. Berry, Philip J. Bos, Douglas R. Bryant
  • Publication number: 20180364526
    Abstract: Liquid crystal photonic devices and microcavities filled with liquid crystal materials are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. Previous research on photo-definable alignment layers has shown that they have limited stability, particularly against subsequent light exposure. A method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer is described, along with a method of utilizing a pre-polymer infused into the microcavity mixed with the liquid crystal to provide photostability. In this method, the polymer layer, formed under optical irradiation of liquid crystal cells, is effectively localized to a thin region near the substrate surface and thus provides a significant improvement in the photostability of the liquid crystal alignment.
    Type: Application
    Filed: August 30, 2018
    Publication date: December 20, 2018
    Inventors: Valerie A. Finnemeyer, Robert K. Reich, Harry R. Clark, Carl O. Bozler, Shaun R. Berry, Philip J. Bos, Douglas R. Bryant
  • Publication number: 20160109760
    Abstract: Liquid crystal photonic devices and microcavities filled with liquid crystal materials are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. Previous research on photo-definable alignment layers has shown that they have limited stability, particularly against subsequent light exposure. A method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer is described, along with a method of utilizing a pre-polymer infused into the microcavity mixed with the liquid crystal to provide photostability. In this method, the polymer layer, formed under optical irradiation of liquid crystal cells, is effectively localized to a thin region near the substrate surface and thus provides a significant improvement in the photostability of the liquid crystal alignment.
    Type: Application
    Filed: September 4, 2015
    Publication date: April 21, 2016
    Inventors: Valerie A. Finnemeyer, Robert K. Reich, Harry R. Clark, Carl O. Bozler, Shaun R. Berry, Philip J. Bos, Douglas R. Bryant