Patents by Inventor Valerie M. Farrugia

Valerie M. Farrugia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240247092
    Abstract: Highly spherical particles may comprise a thermoplastic polymer grafted to a carbon nanomaterial (CNM-g-polymer), wherein the particles have an aerated density of about 0.5 g/cm3 (preferably about 0.55 g/cm3) to about 0.8 g/cm3. Said CNM-g-polymer particles may be useful in a variety of applications including selective laser sintering additive manufacturing methods.
    Type: Application
    Filed: March 13, 2024
    Publication date: July 25, 2024
    Applicant: Xerox Corporation
    Inventors: Valerie M. Farrugia, Shivanthi Easwari Sriskandha
  • Patent number: 12043755
    Abstract: Particles may be produced that comprise an unsaturated polyamide and an initiator. Said particles may be used in additive manufacturing methods that comprise: depositing the particles optionally in combination with other thermoplastic polymer particles upon a surface; and once deposited, heating at least a portion of the particles to promote consolidation thereof and crosslinking of the unsaturated polyamide, thereby forming a consolidated body comprising a crosslinked polyamide.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: July 23, 2024
    Assignee: Xerox Corporation
    Inventor: Valerie M. Farrugia
  • Publication number: 20240239967
    Abstract: A method of forming a pre-cure solution for a structured organic film (SOF) is described, including contacting at least one type of segment and at least one type of pre-linker with a bio-based solvent. The method also includes dissolving the at least one type of segment and the at least one type of pre-linker within the bio-based solvent. The method also includes where the bio-based solvent has a viscosity above 0.92 MPa-s. A composition including a bio-based solvent is also disclosed.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 18, 2024
    Applicant: XEROX CORPORATION
    Inventors: Valerie M. FARRUGIA, Robert CLARIDGE
  • Publication number: 20240191042
    Abstract: High spherical particles for use in piezoelectric applications may be produced mixing a mixture comprising a graphene oxide-polyvinylidene fluoride (GO-PVDF) composite, a carrier fluid that is immiscible with the PVDF, and optionally an emulsion stabilizer at a temperature equal to or greater than a melting point or softening temperature of the PVDF to disperse the GO-PVDF composite in the carrier fluid, wherein the GO-PVDF composite has a transmission FTIR minimum transmittance ratio of ?-phase PVDF to ?-phase PVDF of about 1 or less; cooling the mixture to below the melting point or softening temperature of the PVDF to form GO-PVDF particles; and separating the GO-PVDF particles from the carrier fluid, wherein the GO-PVDF particles comprise the graphene oxide dispersed in the PVDF, and wherein the GO-PVDF particles have a transmission FTIR minimum transmittance ratio of ?-phase PVDF to ?-phase PVDF of about 1 or less.
    Type: Application
    Filed: February 19, 2024
    Publication date: June 13, 2024
    Applicant: Xerox Corporation
    Inventors: Valerie M. FARRUGIA, Robert CLARIDGE, Hojjat Seyed JAMALI
  • Publication number: 20240174821
    Abstract: A method for producing polyimide microparticles may comprise: combining a diamine and a dianhydride in a first dry, high boiling point solvent; reacting the diamine and the dianhydride to produce a mixture comprising poly(amic acid) (PAA) and the first dry, high boiling point solvent; emulsifying the mixture in a matrix fluid that is immiscible with the first dry, high boiling point solvent using an emulsion stabilizer to form a precursor emulsion that is an oil-in-oil emulsion; and heating the precursor emulsion during and/or after formation to a temperature sufficient to polymerize the PAA to form the polyimide microparticles.
    Type: Application
    Filed: February 9, 2024
    Publication date: May 30, 2024
    Applicant: Xerox Corporation
    Inventors: Hojjat Seyed JAMALI, Valerie M. FARRUGIA
  • Publication number: 20240174808
    Abstract: A structured organic film (SOF) is disclosed. The structured organic film also includes a plurality of segments, a plurality of linkers, and a plurality of ionic capping segments, where at least one or more of the ionic capping segments may include a piperidinium group. Implementations of the structured organic film (SOF) may include where the piperidinium group is a bicyclic piperidinium group. The piperidinium group can be an n-cyclic quaternary ammonium. A total concentration of ionic segments in the SOF is from about 0.1 to about 5.0 molar equivalents based on a total concentration of segments in the SOF. The piperidinium group can be 3-methanol-6-azoniaspiro[5.5]undecane (MeASU). The structured organic film (SOF) has an ion exchange capacity (IEC) of from about 0.25 meq/g to about 5.00 meq/g. An ion-exchange membrane may include the structured organic film (SOF).
    Type: Application
    Filed: November 1, 2022
    Publication date: May 30, 2024
    Applicant: XEROX CORPORATION
    Inventors: Robert CLARIDGE, Valerie M. FARRUGIA
  • Publication number: 20240116858
    Abstract: A structured organic film (SOF) is disclosed. The structured organic film includes a plurality of segments, a plurality of linkers, and a plurality of capping segments. The structured organic film also includes a first surface of the SOF. The film also includes a parallel second surface of the SOF connected to the first surface by a thickness of the SOF, where a segment to capping segment ratio is greater at the first surface as compared to the parallel second surface. A membrane including a free-standing film comprised of a structured organic film is also disclosed.
    Type: Application
    Filed: September 15, 2022
    Publication date: April 11, 2024
    Applicant: XEROX CORPORATION
    Inventors: Valerie M. Farrugia, Shivanthi Easwari Sriskandha, Matthew A. Heuft
  • Publication number: 20240115974
    Abstract: A structured organic film (SOF) is disclosed. The structured organic film also includes a plurality of segments, a plurality of linkers, and optionally a plurality of capping segments, where at least one or more capping segments may include at least one cationic species. Implementations of the structured organic film (SOF) include where all of the plurality of linkers are bonded to the plurality of segments. A concentration of ionic capping segments in the SOF is from about 0.1 to about 5.0 molar equivalents of ionic capping segments as compared to a concentration of nonionic segments in the SOF. An ion-exchange membrane may include the structured organic film (SOF).
    Type: Application
    Filed: September 15, 2022
    Publication date: April 11, 2024
    Applicant: XEROX CORPORATION
    Inventors: Valerie M. Farrugia, Shivanthi Easwari Sriskandha, Matthew A. Heuft
  • Publication number: 20240115975
    Abstract: A structured organic film (SOF) is disclosed. The structured organic film also includes a plurality of segments, a plurality of linkers, and optionally a plurality of capping segments, where at least one or more capping segments may include at least one anionic species. Implementations of the structured organic film (SOF) include where all of the plurality of linkers are bonded to the plurality of segments. A concentration of ionic capping segments in the SOF is from about 0.1 to about 5.0 molar equivalents of ionic capping segments as compared to a concentration of nonionic segments in the SOF. At least one of the plurality of capping segments may include a hydroxysulfonic acid, a hydroxysulfinic acid, or a combination thereof. The structured organic film (SOF) has an ion exchange capacity (IEC) of from about 0.25 meq/g to about 5.00 meq/g.
    Type: Application
    Filed: September 15, 2022
    Publication date: April 11, 2024
    Applicant: XEROX CORPORATION
    Inventors: Valerie M. Farrugia, Shivanthi Easwari Sriskandha, Matthew A. Heuft
  • Publication number: 20240110008
    Abstract: A structured organic film (SOF) is disclosed including a plurality of segments, a plurality of linkers, and a plurality of ionic capping segments, where at least one or more ionic capping segments may include imidazolium. Implementations of the structured organic film (SOF) include where a concentration of ionic capping segments in the SOF is from about 0.1 to about 5.0 molar equivalents of ionic capping segments as compared to a concentration of nonionic segments in the SOF. A thickness of the SOF is from about 100 nm to about 500 ?m. At least one of the plurality of ionic capping segments may include n-hydroxyethyl-1,2,4,5-tetramethylimidazolium (NETMImBr). At least one of the plurality of ionic capping segments may include n-hydroxypropyl-1,2,4,5-tetramethylimidazolium (NPTMImBr). An ion-exchange membrane may include the structured organic film (SOF).
    Type: Application
    Filed: September 15, 2022
    Publication date: April 4, 2024
    Applicant: XEROX CORPORATION
    Inventors: Robert Claridge, Valerie M. Farrugia, David Lawton
  • Publication number: 20240092972
    Abstract: A method for producing polyamide particles may include: mixing a mixture comprising a polyamide, a carrier fluid that is immiscible with the polyamide, and nanoparticles at a temperature greater than a melting point or softening temperature of the polyamide and at a shear rate sufficiently high to disperse the polyamide in the carrier fluid; cooling the mixture to below the melting point or softening temperature of the polyamide to form solidified particles comprising polyamide particles having a circularity of 0.90 or greater and that comprise the polyamide and the nanoparticles associated with an outer surface of the polyamide particles; and separating the solidified particles from the carrier fluid.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Applicant: Xerox Corporation
    Inventors: Valerie M. FARRUGIA, Yulin WANG, Chu Yin HUANG, Carolyn Patricia MOORLAG
  • Patent number: 11932735
    Abstract: High spherical particles for use in piezoelectric applications may be produced mixing a mixture comprising a graphene oxide-polyvinylidene fluoride (GO-PVDF) composite, a carrier fluid that is immiscible with the PVDF, and optionally an emulsion stabilizer at a temperature equal to or greater than a melting point or softening temperature of the PVDF to disperse the GO-PVDF composite in the carrier fluid, wherein the GO-PVDF composite has a transmission FTIR minimum transmittance ratio of ?-phase PVDF to ?-phase PVDF of about 1 or less; cooling the mixture to below the melting point or softening temperature of the PVDF to form GO-PVDF particles; and separating the GO-PVDF particles from the carrier fluid, wherein the GO-PVDF particles comprise the graphene oxide dispersed in the PVDF, and wherein the GO-PVDF particles have a transmission FTIR minimum transmittance ratio of ?-phase PVDF to ?-phase PVDF of about 1 or less.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 19, 2024
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Robert Claridge, Hojjat Seyed Jamali
  • Publication number: 20240084149
    Abstract: Polymer particles that comprise a thermoplastic polymer and a nucleating agent may be useful in additive manufacturing methods where warping may be mitigated. For example, a method of producing sais polymer particles may comprise: a thermoplastic polymer, a nucleating agent, a carrier fluid, and optionally an emulsion stabilizer at a temperature at or greater than a melting point or softening temperature of the thermoplastic polymer to emulsify a thermoplastic polymer melt in the carrier fluid; cooling the mixture to form polymer particles; and separating the polymer particles from the carrier fluid, wherein the polymer particles comprise the thermoplastic polymer, the nucleating agent, the emulsion stabilizer, if included, and wherein the polymer particles have a crystallization temperature that is substantially the same as a crystallization temperature of the thermoplastic polymer prior to mixing.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Applicant: Xerox Corporation
    Inventors: Shivanthi Easwari SRISKANDHA, Valerie M. FARRUGIA
  • Patent number: 11905381
    Abstract: A method for producing polyimide microparticles may comprise: combining a diamine and a dianhydride in a first dry, high boiling point solvent; reacting the diamine and the dianhydride to produce a mixture comprising poly(amic acid) (PAA) and the first dry, high boiling point solvent; emulsifying the mixture in a matrix fluid that is immiscible with the first dry, high boiling point solvent using an emulsion stabilizer to form a precursor emulsion that is an oil-in-oil emulsion; and heating the precursor emulsion during and/or after formation to a temperature sufficient to polymerize the PAA to form the polyimide microparticles.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: February 20, 2024
    Assignee: Xerox Corporation
    Inventors: Hojjat Seyed Jamali, Valerie M. Farrugia
  • Patent number: 11884763
    Abstract: A nonlimiting example method of forming highly spherical carbon nanomaterial-graft-polyolefin (CNM-g-polyolefin) particles may comprising: mixing a mixture comprising: (a) a CNM-g-polyolefin comprising a polyolefin grafted to a carbon nanomaterial, (b) a carrier fluid that is immiscible with the polyolefin of the CNM-g-polyolefin, optionally (c) a thermoplastic polymer not grafted to a CNM, and optionally (d) an emulsion stabilizer at a temperature greater than a melting point or softening temperature of the polyolefin of the CNM-g-polyolefin and the thermoplastic polymer, when included, and at a shear rate sufficiently high to disperse the CNM-g-polyolefin in the carrier fluid; cooling the mixture to below the melting point or softening temperature to form the CNM-g-polyolefin particles; and separating the CNM-g-polyolefin particles from the carrier fluid.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: January 30, 2024
    Assignee: Xerox Corporation
    Inventors: Shivanthi Easwari Sriskandha, Valerie M. Farrugia
  • Publication number: 20240026104
    Abstract: A method of producing thermoplastic particles may comprise: mixing a melt emulsion comprising (a) a continuous phase that comprises a carrier fluid having a polarity Hansen solubility parameter (dP) of about 7 MPa0.5 or less, (b) a dispersed phase that comprises a dispersing fluid having a dP of about 8 MPa0.5 or more, and (c) an inner phase that comprises a thermoplastic polyester at a temperature greater than a melting point or softening temperature of the thermoplastic polyester and at a shear rate sufficiently high to disperse the thermoplastic polyester in the dispersed phase; and cooling the melt emulsion to below the melting point or softening temperature of the thermoplastic polyester to form solidified particles comprising the thermoplastic polyester.
    Type: Application
    Filed: October 4, 2023
    Publication date: January 25, 2024
    Applicant: Xerox Corporation
    Inventors: Hojjat Seyed JAMALI, Valerie M. FARRUGIA
  • Patent number: 11866562
    Abstract: Melt emulsification may be employed to form elastomeric particulates in a narrow size range when nanoparticles are included as an emulsion stabilizer. Such processes may comprise combining a polyurethane polymer and nanoparticles with a carrier fluid at a heating temperature at or above a melting point or a softening temperature of the polyurethane polymer, applying sufficient shear to disperse the polyurethane polymer as liquefied droplets in the presence of the nanoparticles in the carrier fluid at the heating temperature, cooling the carrier fluid at least until elastomeric particulates in a solidified state form, and separating the elastomeric particulates from the carrier fluid. In the elastomeric particulates, the polyurethane polymer defines a core and an outer surface of the elastomeric particulates and the nanoparticles are associated with the outer surface. The elastomeric particulates may have a D50 of about 1 ?m to about 1,000 ?m.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 9, 2024
    Assignee: Xerox Corporation
    Inventors: Cristina Resetco, Shivanthi Easwari Sriskandha, Edward G. Zwartz, Michael S. Hawkins, Valerie M. Farrugia
  • Patent number: 11866552
    Abstract: A method for producing polyamide particles may include: mixing a mixture comprising a polyamide, a carrier fluid that is immiscible with the polyamide, and nanoparticles at a temperature greater than a melting point or softening temperature of the polyamide and at a shear rate sufficiently high to disperse the polyamide in the carrier fluid; cooling the mixture to below the melting point or softening temperature of the polyamide to form solidified particles comprising polyamide particles having a circularity of 0.90 or greater and that comprise the polyamide and the nanoparticles associated with an outer surface of the polyamide particles; and separating the solidified particles from the carrier fluid.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 9, 2024
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Yulin Wang, Chu Yin Huang, Carolyn Patricia Moorlag
  • Patent number: 11866581
    Abstract: A method for producing highly spherical polymer particles comprising a polyamide having an optical absorber in a backbone of the polyamide (IBOA-polyamide) may comprise: mixing a mixture comprising the IBOA-polyamide, a carrier fluid that is immiscible with the IBOA-polyamide, and optionally an emulsion stabilizer at a temperature greater than a melting point or softening temperature of the IBOA-polyamide and at a shear rate sufficiently high to disperse the IBOA-polyamide in the carrier fluid; and cooling the mixture to below the melting point or softening temperature of the IBOA-polyamide to form particles comprising the IBOA-polyamide and the emulsion stabilizer, when present, associated with an outer surface of the particles.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 9, 2024
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Mihaela Maria Birau
  • Patent number: 11859103
    Abstract: Polymer particles that comprise a thermoplastic polymer and a nucleating agent may be useful in additive manufacturing methods where warping may be mitigated. For example, a method of producing said polymer particles may comprise: mixing a mixture comprising a thermoplastic polymer, a nucleating agent, a carrier fluid, and optionally an emulsion stabilizer at a temperature at or greater than a melting point or softening temperature of the thermoplastic polymer to emulsify a thermoplastic polymer melt in the carrier fluid; cooling the mixture to form polymer particles; and separating the polymer particles from the carrier fluid, wherein the polymer particles comprise the thermoplastic polymer, the nucleating agent, the emulsion stabilizer, if included, and wherein the polymer particles have a crystallization temperature that is substantially the same as a crystallization temperature of the thermoplastic polymer prior to mixing.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: January 2, 2024
    Assignee: Xerox Corporation
    Inventors: Shivanthi Easwari Sriskandha, Valerie M. Farrugia