Patents by Inventor Valerie M. Farrugia

Valerie M. Farrugia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115974
    Abstract: A structured organic film (SOF) is disclosed. The structured organic film also includes a plurality of segments, a plurality of linkers, and optionally a plurality of capping segments, where at least one or more capping segments may include at least one cationic species. Implementations of the structured organic film (SOF) include where all of the plurality of linkers are bonded to the plurality of segments. A concentration of ionic capping segments in the SOF is from about 0.1 to about 5.0 molar equivalents of ionic capping segments as compared to a concentration of nonionic segments in the SOF. An ion-exchange membrane may include the structured organic film (SOF).
    Type: Application
    Filed: September 15, 2022
    Publication date: April 11, 2024
    Applicant: XEROX CORPORATION
    Inventors: Valerie M. Farrugia, Shivanthi Easwari Sriskandha, Matthew A. Heuft
  • Publication number: 20240115975
    Abstract: A structured organic film (SOF) is disclosed. The structured organic film also includes a plurality of segments, a plurality of linkers, and optionally a plurality of capping segments, where at least one or more capping segments may include at least one anionic species. Implementations of the structured organic film (SOF) include where all of the plurality of linkers are bonded to the plurality of segments. A concentration of ionic capping segments in the SOF is from about 0.1 to about 5.0 molar equivalents of ionic capping segments as compared to a concentration of nonionic segments in the SOF. At least one of the plurality of capping segments may include a hydroxysulfonic acid, a hydroxysulfinic acid, or a combination thereof. The structured organic film (SOF) has an ion exchange capacity (IEC) of from about 0.25 meq/g to about 5.00 meq/g.
    Type: Application
    Filed: September 15, 2022
    Publication date: April 11, 2024
    Applicant: XEROX CORPORATION
    Inventors: Valerie M. Farrugia, Shivanthi Easwari Sriskandha, Matthew A. Heuft
  • Publication number: 20240116858
    Abstract: A structured organic film (SOF) is disclosed. The structured organic film includes a plurality of segments, a plurality of linkers, and a plurality of capping segments. The structured organic film also includes a first surface of the SOF. The film also includes a parallel second surface of the SOF connected to the first surface by a thickness of the SOF, where a segment to capping segment ratio is greater at the first surface as compared to the parallel second surface. A membrane including a free-standing film comprised of a structured organic film is also disclosed.
    Type: Application
    Filed: September 15, 2022
    Publication date: April 11, 2024
    Applicant: XEROX CORPORATION
    Inventors: Valerie M. Farrugia, Shivanthi Easwari Sriskandha, Matthew A. Heuft
  • Publication number: 20240110008
    Abstract: A structured organic film (SOF) is disclosed including a plurality of segments, a plurality of linkers, and a plurality of ionic capping segments, where at least one or more ionic capping segments may include imidazolium. Implementations of the structured organic film (SOF) include where a concentration of ionic capping segments in the SOF is from about 0.1 to about 5.0 molar equivalents of ionic capping segments as compared to a concentration of nonionic segments in the SOF. A thickness of the SOF is from about 100 nm to about 500 ?m. At least one of the plurality of ionic capping segments may include n-hydroxyethyl-1,2,4,5-tetramethylimidazolium (NETMImBr). At least one of the plurality of ionic capping segments may include n-hydroxypropyl-1,2,4,5-tetramethylimidazolium (NPTMImBr). An ion-exchange membrane may include the structured organic film (SOF).
    Type: Application
    Filed: September 15, 2022
    Publication date: April 4, 2024
    Applicant: XEROX CORPORATION
    Inventors: Robert Claridge, Valerie M. Farrugia, David Lawton
  • Publication number: 20240092972
    Abstract: A method for producing polyamide particles may include: mixing a mixture comprising a polyamide, a carrier fluid that is immiscible with the polyamide, and nanoparticles at a temperature greater than a melting point or softening temperature of the polyamide and at a shear rate sufficiently high to disperse the polyamide in the carrier fluid; cooling the mixture to below the melting point or softening temperature of the polyamide to form solidified particles comprising polyamide particles having a circularity of 0.90 or greater and that comprise the polyamide and the nanoparticles associated with an outer surface of the polyamide particles; and separating the solidified particles from the carrier fluid.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Applicant: Xerox Corporation
    Inventors: Valerie M. FARRUGIA, Yulin WANG, Chu Yin HUANG, Carolyn Patricia MOORLAG
  • Patent number: 11932735
    Abstract: High spherical particles for use in piezoelectric applications may be produced mixing a mixture comprising a graphene oxide-polyvinylidene fluoride (GO-PVDF) composite, a carrier fluid that is immiscible with the PVDF, and optionally an emulsion stabilizer at a temperature equal to or greater than a melting point or softening temperature of the PVDF to disperse the GO-PVDF composite in the carrier fluid, wherein the GO-PVDF composite has a transmission FTIR minimum transmittance ratio of ?-phase PVDF to ?-phase PVDF of about 1 or less; cooling the mixture to below the melting point or softening temperature of the PVDF to form GO-PVDF particles; and separating the GO-PVDF particles from the carrier fluid, wherein the GO-PVDF particles comprise the graphene oxide dispersed in the PVDF, and wherein the GO-PVDF particles have a transmission FTIR minimum transmittance ratio of ?-phase PVDF to ?-phase PVDF of about 1 or less.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 19, 2024
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Robert Claridge, Hojjat Seyed Jamali
  • Publication number: 20240084149
    Abstract: Polymer particles that comprise a thermoplastic polymer and a nucleating agent may be useful in additive manufacturing methods where warping may be mitigated. For example, a method of producing sais polymer particles may comprise: a thermoplastic polymer, a nucleating agent, a carrier fluid, and optionally an emulsion stabilizer at a temperature at or greater than a melting point or softening temperature of the thermoplastic polymer to emulsify a thermoplastic polymer melt in the carrier fluid; cooling the mixture to form polymer particles; and separating the polymer particles from the carrier fluid, wherein the polymer particles comprise the thermoplastic polymer, the nucleating agent, the emulsion stabilizer, if included, and wherein the polymer particles have a crystallization temperature that is substantially the same as a crystallization temperature of the thermoplastic polymer prior to mixing.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Applicant: Xerox Corporation
    Inventors: Shivanthi Easwari SRISKANDHA, Valerie M. FARRUGIA
  • Patent number: 11905381
    Abstract: A method for producing polyimide microparticles may comprise: combining a diamine and a dianhydride in a first dry, high boiling point solvent; reacting the diamine and the dianhydride to produce a mixture comprising poly(amic acid) (PAA) and the first dry, high boiling point solvent; emulsifying the mixture in a matrix fluid that is immiscible with the first dry, high boiling point solvent using an emulsion stabilizer to form a precursor emulsion that is an oil-in-oil emulsion; and heating the precursor emulsion during and/or after formation to a temperature sufficient to polymerize the PAA to form the polyimide microparticles.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: February 20, 2024
    Assignee: Xerox Corporation
    Inventors: Hojjat Seyed Jamali, Valerie M. Farrugia
  • Patent number: 11884763
    Abstract: A nonlimiting example method of forming highly spherical carbon nanomaterial-graft-polyolefin (CNM-g-polyolefin) particles may comprising: mixing a mixture comprising: (a) a CNM-g-polyolefin comprising a polyolefin grafted to a carbon nanomaterial, (b) a carrier fluid that is immiscible with the polyolefin of the CNM-g-polyolefin, optionally (c) a thermoplastic polymer not grafted to a CNM, and optionally (d) an emulsion stabilizer at a temperature greater than a melting point or softening temperature of the polyolefin of the CNM-g-polyolefin and the thermoplastic polymer, when included, and at a shear rate sufficiently high to disperse the CNM-g-polyolefin in the carrier fluid; cooling the mixture to below the melting point or softening temperature to form the CNM-g-polyolefin particles; and separating the CNM-g-polyolefin particles from the carrier fluid.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: January 30, 2024
    Assignee: Xerox Corporation
    Inventors: Shivanthi Easwari Sriskandha, Valerie M. Farrugia
  • Publication number: 20240026104
    Abstract: A method of producing thermoplastic particles may comprise: mixing a melt emulsion comprising (a) a continuous phase that comprises a carrier fluid having a polarity Hansen solubility parameter (dP) of about 7 MPa0.5 or less, (b) a dispersed phase that comprises a dispersing fluid having a dP of about 8 MPa0.5 or more, and (c) an inner phase that comprises a thermoplastic polyester at a temperature greater than a melting point or softening temperature of the thermoplastic polyester and at a shear rate sufficiently high to disperse the thermoplastic polyester in the dispersed phase; and cooling the melt emulsion to below the melting point or softening temperature of the thermoplastic polyester to form solidified particles comprising the thermoplastic polyester.
    Type: Application
    Filed: October 4, 2023
    Publication date: January 25, 2024
    Applicant: Xerox Corporation
    Inventors: Hojjat Seyed JAMALI, Valerie M. FARRUGIA
  • Patent number: 11866581
    Abstract: A method for producing highly spherical polymer particles comprising a polyamide having an optical absorber in a backbone of the polyamide (IBOA-polyamide) may comprise: mixing a mixture comprising the IBOA-polyamide, a carrier fluid that is immiscible with the IBOA-polyamide, and optionally an emulsion stabilizer at a temperature greater than a melting point or softening temperature of the IBOA-polyamide and at a shear rate sufficiently high to disperse the IBOA-polyamide in the carrier fluid; and cooling the mixture to below the melting point or softening temperature of the IBOA-polyamide to form particles comprising the IBOA-polyamide and the emulsion stabilizer, when present, associated with an outer surface of the particles.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 9, 2024
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Mihaela Maria Birau
  • Patent number: 11866552
    Abstract: A method for producing polyamide particles may include: mixing a mixture comprising a polyamide, a carrier fluid that is immiscible with the polyamide, and nanoparticles at a temperature greater than a melting point or softening temperature of the polyamide and at a shear rate sufficiently high to disperse the polyamide in the carrier fluid; cooling the mixture to below the melting point or softening temperature of the polyamide to form solidified particles comprising polyamide particles having a circularity of 0.90 or greater and that comprise the polyamide and the nanoparticles associated with an outer surface of the polyamide particles; and separating the solidified particles from the carrier fluid.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 9, 2024
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Yulin Wang, Chu Yin Huang, Carolyn Patricia Moorlag
  • Patent number: 11866562
    Abstract: Melt emulsification may be employed to form elastomeric particulates in a narrow size range when nanoparticles are included as an emulsion stabilizer. Such processes may comprise combining a polyurethane polymer and nanoparticles with a carrier fluid at a heating temperature at or above a melting point or a softening temperature of the polyurethane polymer, applying sufficient shear to disperse the polyurethane polymer as liquefied droplets in the presence of the nanoparticles in the carrier fluid at the heating temperature, cooling the carrier fluid at least until elastomeric particulates in a solidified state form, and separating the elastomeric particulates from the carrier fluid. In the elastomeric particulates, the polyurethane polymer defines a core and an outer surface of the elastomeric particulates and the nanoparticles are associated with the outer surface. The elastomeric particulates may have a D50 of about 1 ?m to about 1,000 ?m.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 9, 2024
    Assignee: Xerox Corporation
    Inventors: Cristina Resetco, Shivanthi Easwari Sriskandha, Edward G. Zwartz, Michael S. Hawkins, Valerie M. Farrugia
  • Patent number: 11859051
    Abstract: Methods for synthesizing a polyamide having the optical absorber in the backbone of the polyamide may comprise: polymerizing polyamide monomers in the presence of an optical absorber selected from the group consisting of a polyamine optical absorber, a polyacid optical absorber, an amino acid optical absorber, and any combination thereof to yield the polyamide having the optical absorber in the backbone of the polyamide. Said polyamides having the optical absorber in the backbone of the polyamide may be useful in producing objects by methods that include melt extrusion, injection molding, compression molding, melt spinning, melt emulsification, spray drying, cryogenic milling, freeze drying polymer dispersions, and precipitation of polymer dispersions.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 2, 2024
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Mihaela Maria Birau
  • Patent number: 11859103
    Abstract: Polymer particles that comprise a thermoplastic polymer and a nucleating agent may be useful in additive manufacturing methods where warping may be mitigated. For example, a method of producing said polymer particles may comprise: mixing a mixture comprising a thermoplastic polymer, a nucleating agent, a carrier fluid, and optionally an emulsion stabilizer at a temperature at or greater than a melting point or softening temperature of the thermoplastic polymer to emulsify a thermoplastic polymer melt in the carrier fluid; cooling the mixture to form polymer particles; and separating the polymer particles from the carrier fluid, wherein the polymer particles comprise the thermoplastic polymer, the nucleating agent, the emulsion stabilizer, if included, and wherein the polymer particles have a crystallization temperature that is substantially the same as a crystallization temperature of the thermoplastic polymer prior to mixing.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: January 2, 2024
    Assignee: Xerox Corporation
    Inventors: Shivanthi Easwari Sriskandha, Valerie M. Farrugia
  • Patent number: 11859052
    Abstract: A nonlimiting example method for synthesizing a pigment-pendent polyamide (PP-polyamide) may comprise: functionalizing metal oxide particles bound to a pigment particle with a compound having an epoxy to produce a surface treated pigment having a pendent epoxy; and reacting the pendent epoxy with a polyamide to yield the PP-polyamide. Another nonlimiting example method for synthesizing a PP-polyamide may comprise: functionalizing metal oxide particles bound to a pigment particle with a silica particle having a carboxylic acid surface treatment to produce a surface treated pigment having a pendent carboxylic acid; converting the pendent carboxylic acid to a pendent acid chloride; and reacting the pendent acid chloride with a polyamide to yield the PP-polyamide.
    Type: Grant
    Filed: December 28, 2022
    Date of Patent: January 2, 2024
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Karen A. Moffat
  • Publication number: 20230416529
    Abstract: Pigmented polymer particles may comprise a thermoplastic polymer and a pigment, wherein at least some of the pigmented polymer particles have a morphology according to (a), (b), (c), or any combination thereof: (a) the pigment having a coating comprising the thermoplastic polymer and the coated pigment adhered to a thermoplastic polymer particle, (b) the pigment being embedded in an outer surface of the thermoplastic polymer particle, and (c) the pigment being encapsulated by the thermoplastic polymer particle. The pigmented polymer particles, especially the highly spherical pigmented polymer particles, may be useful, among other things, as starting material for additive manufacturing. For example, a method may comprise: depositing, upon a surface, the foregoing pigmented polymer particles optionally in combination with other thermoplastic polymer particles; and once deposited, heating at least a portion of the particles to promote consolidation thereof and form a consolidated body.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Applicant: Xerox Corporation
    Inventors: Shivanthi Easwari SRISKANDHA, Valerie M. FARRUGIA, Richard Philip Nelson VEREGIN
  • Patent number: 11851536
    Abstract: A process including combining polystyrene and a first solvent to form a polystyrene solution; heating the polystyrene solution; adding a second solvent to the polystyrene solution with optional stirring whereby polystyrene microparticles are formed via microprecipitation; optionally, cooling the formed polystyrene microparticles in solution; and optionally, removing the first solvent and second solvent. A polystyrene microparticle formed by a microprecipitation process, wherein the polystyrene particle has a spherical morphology, a particle diameter of greater than about 10 micrometers, and a weight average molecular weight of from about 38,000 to about 200,000 Daltons. A method of selective laser sintering including providing polystyrene microparticles formed by a microprecipitation process; and exposing the microparticles to a laser to fuse the microparticles.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: December 26, 2023
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Edward G. Zwartz, Sandra J. Gardner
  • Publication number: 20230407087
    Abstract: A method for producing highly spherical polymer particles comprising a polyamide having an optical absorber pendent from a backbone of the polyamide (OAMB-polyamide) may comprise: mixing a mixture comprising the OAMB-polyamide, a carrier fluid that is immiscible with the OAMB-polyamide, and optionally an emulsion stabilizer at a temperature greater than a melting point or softening temperature of the OAMB-polyamide and at a shear rate sufficiently high to disperse the OAMB-polyamide in the carrier fluid; and cooling the mixture to below the melting point or softening temperature of the OAMB-polyamide to form particles comprising the OAMB-polyamide and the emulsion stabilizer, when present, associated with an outer surface of the particles.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 21, 2023
    Applicant: Xerox Corporation
    Inventors: Mihaela Maria BIRAU, Valerie M. FARRUGIA
  • Publication number: 20230395911
    Abstract: An electrochemical device including a first substrate layer is disclosed. The electrochemical device also includes an anode disposed upon the first substrate layer. The device also includes a second substrate layer. The electrochemical device also includes a cathode disposed upon the second substrate layer and an electrolyte composition disposed between and in contact with the anode and the cathode. The electrochemical device also includes an extruded sealing layer composition disposed between the first substrate layer and the second substrate layer. A sealing layer composition and a method of producing a sealing layer is also disclosed.
    Type: Application
    Filed: June 7, 2022
    Publication date: December 7, 2023
    Applicant: XEROX CORPORATION
    Inventors: Nan-Xing Hu, Naveen Chopra, Gregory McGuire, Edward G. Zwartz, Valerie M. Farrugia