Patents by Inventor Valery Shklover

Valery Shklover has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9950406
    Abstract: A coated product having coating that includes a layer of hard material having a defined multi-ply layer structure, thereby significantly minimizing or preventing heat input into the coated substrate resulting from the effect of thermal hot spots.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: April 24, 2018
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Matthias Lukas Sobiech, Sebastian Stein, Valery Shklover, Paul Heinrich Michael Boettger, Joerg Patscheider
  • Patent number: 9869015
    Abstract: A hard material layer system with a multilayer structure, comprising alternating layers A and B, with A layers having the composition MeApAOnANmA in atomic percent and B layers having the composition MeBpBOnBNmB in atomic percent, where the thermal conductivity of the A layers is greater than the thermal conductivity of the B layers. MeA and MeB each comprise at least one metal of the group Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al, pA indicates the atomic percentage of MeA and pB indicates the atomic percentage of MeB and the following is true: PA=PB, nA indicates the oxygen concentration in the A layers in atomic percent and nB indicates the oxygen concentration in the B layers in atomic percent and the following is true: nA<nB, and mA indicates the nitrogen concentration in the A layers in atomic percent and mB indicates the nitrogen concentration in the B layers in atomic percent and the following is true: pA/(nA+mA)=pB/(nB+mB).
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: January 16, 2018
    Assignees: Oerlikon Surface Solutions AG, Pfäffikon, ETH ZÜRICH, EMPA
    Inventors: Matthias Lukas Sobiech, Sebastian Stein, Paul Heinrich Böttger, Valery Shklover, Jörg Patscheider
  • Publication number: 20170173757
    Abstract: A coated product having coating that includes a layer of hard material having a defined multi-ply layer structure, thereby significantly minimizing or preventing heat input into the coated substrate resulting from the effect of thermal hot spots.
    Type: Application
    Filed: November 24, 2014
    Publication date: June 22, 2017
    Inventors: Matthias Lukas Sobiech, Sebastian Stein, Valery Shklover, Paul Heinrich Michael Boettger, Joerg Patscheider
  • Publication number: 20160138153
    Abstract: A hard material layer system with a multilayer structure, comprising alternating layers A and B, with A layers having the composition MeApAOANmA in atomic percent and B layers having the composition MeBpBOnBNmB in atomic percent, where the thermal conductivity of the A layers is greater than the thermal conductivity of the B layers. MeA and MeB each comprise at least one metal of the group Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al, pA indicates the atomic percentage of MeA and pB indicates the atomic percentage of MeB and the following is true: PA=PB, nA indicates the oxygen concentration in the A layers in atomic percent and nB indicates the oxygen concentration in the B layers in atomic percent and the following is true: nA<nB, and mA indicates the nitrogen concentration in the A layers in atomic percent and mB indicates the nitrogen concentration in the B layers in atomic percent and the following is true: pA/(nA+mA)=pB/(nB+mB).
    Type: Application
    Filed: March 26, 2014
    Publication date: May 19, 2016
    Inventors: Matthias Lukas Sobiech, Sebastian Stein, Paul Heinrich Böttger, Valery Shklover, Jörg Patscheider
  • Publication number: 20140242411
    Abstract: A high temperature thermal barrier coating which consists of a stabilized ZrO2 composition for the protection of thermally loaded components (10, 10?) of a thermal machine, especially a gas turbine, is disclosed. The thermal barrier coating is stabilized with at least 15 mol % Y1+v Ta1?vO4?v, the ZrO2 is partially substituted by at least 10 mol % HfO2 and the composition is established according to the formula (Y1+vTa1?vO4?v)z(Zr1?xHfxO2)1?z, with x ranging from 0.1 to 0.5, v ranging from ?0.1 to 0.2 and z ranging from 0.15 to 0.25.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Inventors: Gregoire Etienne WITZ, Hans-Peter BOSSMANN, Anup BHATTACHARYA, Valery SHKLOVER
  • Patent number: 8216689
    Abstract: Components (1) have a thermal barrier coating (2-6) on the surface thereof, wherein the thermal barrier coating includes at least one layer (3) having chemically stabilized zirconia, and wherein at least indirectly adjacent to the layer (3) with chemically stabilized zirconia and on its surface facing side, there is provided a protective layer (4) and/or a infiltration zone (5) which does not react with environmental contaminant compositions that contain oxides of calcium and which does not react with the material of the layer (3) having chemically stabilized zirconia. Methods for making such components as well as to uses of specific systems for coating thermal barrier coatings, can prevent CMAS.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: July 10, 2012
    Assignees: ALSTOM Technology Ltd., ETH Eidgenoessische Technische Hochschule Zuerich
    Inventors: Gregoire Etienne Witz, Hans-Peter Bossmann, Valery Shklover, Sharath Bachegowda
  • Patent number: 7650050
    Abstract: An optical sensor device for local analysis of a combustion process in a combustor of a thermal power plant, in particular a gas turbine plant, includes at least one wavelength selective optical element exposed directly or indirectly to hot combustion gases being produced by said combustion process, the optical element including an array of nano- and/or microcrystalline fibres which are created by shear flow crystallization.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: January 19, 2010
    Assignee: ALSTOM Technology Ltd.
    Inventors: Ken Yves Haffner, Tony Kaiser, Valery Shklover
  • Publication number: 20090324989
    Abstract: Components (1) have a thermal barrier coating (2-6) on the surface thereof, wherein the thermal barrier coating includes at least one layer (3) having chemically stabilized zirconia, and wherein at least indirectly adjacent to the layer (3) with chemically stabilized zirconia and on its surface facing side, there is provided a protective layer (4) and/or a infiltration zone (5) which does not react with environmental contaminant compositions that contain oxides of calcium and which does not react with the material of the layer (3) having chemically stabilized zirconia. Methods for making such components as well as to uses of specific systems for coating thermal barrier coatings, can prevent CMAS.
    Type: Application
    Filed: May 26, 2009
    Publication date: December 31, 2009
    Inventors: Gregoire Etienne Witz, Hans-Peter Bossmann, Valery Shklover, Sharath Bachegowda
  • Publication number: 20070133921
    Abstract: An optical sensor device for local analysis of a combustion process in a combustor of a thermal power plant, in particular a gas turbine plant, includes at least one wavelength selective optical element exposed directly or indirectly to hot combustion gases being produced by said combustion process, the optical element including an array of nano- and/or microcrystalline fibres which are created by shear flow crystallization.
    Type: Application
    Filed: December 8, 2005
    Publication date: June 14, 2007
    Inventors: Ken Haffner, Tony Kaiser, Valery Shklover
  • Patent number: 7169478
    Abstract: Multinary alloys, in particular for use as coatings, if appropriate in combination with other types of layers, for components which are exposed to high temperatures and corrosive gases. The alloys are of the general form: Al—Ni—Ru-M, where at least one B2 phase is present, the aluminum content being in the range from 26–60 atomic percent and where M may be one or more metals and/or semimetals selected from the group consisting of: precious metal, transition metal, rare earths, semimetal. Multinary alloys of this type are very stable with respect to oxidation, have a low thermal conductivity and in particular have similar coefficients of thermal expansion to superalloys, which are usually used as substrates for protective coatings of this type in gas turbine components.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: January 30, 2007
    Assignee: Alstom Technology Ltd.
    Inventors: Anton Kaiser, Valery Shklover, Walter Steurer, Ivan Victor Vjunitsky
  • Patent number: 7060239
    Abstract: The present invention relates to an icosahedral, quasicrystalline compound or compound present in the form of an approximant having the nominal composition: TivCrwAlxSiyOz, in which v=60-65; w=25-30; x=0-6; Y=8-15; z=8-20; and in which the atom percent of oxygen is in the range of between 8 and 15%, and that of aluminum in the range of between 2 to 5%. Due to their layered structure and ceramic intermediate layers, compounds of this type exhibit excellent properties, in particular for use as coatings for gas turbine components, such as for example, rotor blades or guide vanes.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: June 13, 2006
    Assignee: Alstom Technology Ltd.
    Inventors: Valery Shklover, Maxim Konter, Anton Kaiser, Kenneth Franklin Kelton
  • Publication number: 20050031891
    Abstract: Multinary alloys, in particular for use as coatings, if appropriate in combination with other types of layers, for components which are exposed to high temperatures and corrosive gases. The alloys are of the general form: Al—Ni—Ru-M, where at least one B2 phase is present, the aluminum content being in the range from 26-60 atomic percent and where M may be one or more metals and/or semimetals selected from the group consisting of: precious metal, transition metal, rare earths, semimetal. Multinary alloys of this type are very stable with respect to oxidation, have a low thermal conductivity and in particular have similar coefficients of thermal expansion to superalloys, which are usually used as substrates for protective coatings of this type in gas turbine components.
    Type: Application
    Filed: July 16, 2004
    Publication date: February 10, 2005
    Inventors: Anton Kaiser, Valery Shklover, Walter Steurer, Ivan Vjunitsky
  • Publication number: 20040191154
    Abstract: The present invention relates to an icosahedral, quasicrystalline compound or compound present in the form of an approximant having the nominal composition: TivCrwAlxSiyOz, in which v=60-65; w=25-30; x=0-6; Y=8-15; z=8-20; and in which the atom percent of oxygen is in the range of between 8 and 15%, and that of aluminum in the range of between 2 to 5%. Due to their layered structure and ceramic intermediate layers, compounds of this type exhibit excellent properties, in particular for use as coatings for gas turbine components, such as for example, rotor blades or guide vanes.
    Type: Application
    Filed: March 31, 2003
    Publication date: September 30, 2004
    Inventors: Valery Shklover, Maxim Konter, Anton Kaiser, Kenneth Franklin Kelton