Patents by Inventor Vamsy Chodavarapu

Vamsy Chodavarapu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180037933
    Abstract: A heating mechanism for use in DNA applications such as DNA amplification, extraction and sterilization is provided. Nanoparticles having photo-thermal properties are put in contact with a reaction mixture and irradiated with an activation light beam to activate these photo-thermal properties, thereby releasing heat. Nanoparticles of several types may be used. Use of the same nanoparticles or of different one to monitor the reaction using a different light beam is also presented.
    Type: Application
    Filed: September 29, 2017
    Publication date: February 8, 2018
    Inventors: Philip ROCHE, Andrew KIRK, Lenore BEITEL, Miltiadis PALIOURAS, Mark TRIFIRO, Vamsy CHODAVARAPU, Mohamed NAJIH, Joachim THIEMANN
  • Patent number: 9816132
    Abstract: A heating mechanism for use in DNA applications such as DNA amplification, extraction and sterilization is provided. Nanoparticles having photo-thermal properties are put in contact with a reaction mixture and irradiated with an activation light beam to activate these photo-thermal properties, thereby releasing heat. Nanoparticles of several types may be used. Use of the same nanoparticles or of different one to monitor the reaction using a different light beam is also presented.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: November 14, 2017
    Inventors: Philip Roche, Andrew Kirk, Lenore Beitel, Miltiadis Paliouras, Mark Trifiro, Vamsy Chodavarapu, Mohamed Najih, Joachim Thiemann
  • Publication number: 20160370403
    Abstract: Silicon-based capacitive accelerometers are relatively simple to fabricate and offer low cost, small size, low power, low noise and provide high sensitivity, good DC response, low drift, and low temperature sensitivity. However, tri-axial accelerometers, as opposed to using multiple discrete accelerometers, require very low cross-axis sensitivity and close sensitivities across the three directions. It would be beneficial to provide a design methodology for such tri-axial accelerometers which is compatible with commercial MEMS manufacturing processes in order to remove requirements for device specific processing, non-standard processing, etc. Accordingly, tri-axial accelerometers with low cross axis sensitivity have been established exploiting decoupled frames in conjunction with axis specific spring designs.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 22, 2016
    Inventors: ADEL MERDASSI, VAMSY CHODAVARAPU, MOHAMAD NIZAR KEZZO
  • Publication number: 20160033413
    Abstract: Chemical sensors today are deployed in massive volumes across multiple industries and yet at the same time they are subject to substantial research and development effort to establish new, faster, lower cost, more accurate, more sensitive chemical sensors. Such sensors and sensor arrays are being exploited across chemistry, biology, clinical biology, environmental science in civilian and military markets. Amongst the many sensor methodologies are xerogel substrates with two moieties, a receptor for molecular recognition of the analyte and a luminophore for signaling the recognition event. In order to fulfill the requirements for low cost there is a requirement for electronic excitation/read circuits that can support architectures with optical source—N sensors—X filters—M detectors, where M?N and X=N|M.
    Type: Application
    Filed: July 27, 2015
    Publication date: February 4, 2016
    Inventors: VAMSY CHODAVARAPU, DAISY DAIVASAGAYA, ADEL MERDASSI
  • Publication number: 20160006414
    Abstract: MEMS based sensors, particularly capacitive sensors, potentially can address critical considerations for users including accuracy, repeatability, long-term stability, ease of calibration, resistance to chemical and physical contaminants, size, packaging, and cost effectiveness. Accordingly, it would be beneficial to exploit MEMS processes that allow for manufacturability and integration of resonator elements into cavities within the MEMS sensor that are at low pressure allowing high quality factor resonators and absolute pressure sensors to be implemented. Embodiments of the invention provide capacitive sensors and MEMS elements that can be implemented directly above silicon CMOS electronics.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 7, 2016
    Inventors: Vamsy Chodavarapu, George Xereas
  • Publication number: 20160002026
    Abstract: MEMS based sensors, particularly capacitive sensors, potentially can address critical considerations for users including accuracy, repeatability, long-term stability, ease of calibration, resistance to chemical and physical contaminants, size, packaging, and cost effectiveness. Accordingly, it would be beneficial to exploit MEMS processes that allow for manufacturability and integration of resonator elements into cavities within the MEMS sensor that are at low pressure allowing high quality factor resonators and absolute pressure sensors to be implemented. Embodiments of the invention provide capacitive sensors and MEMS elements that can be implemented directly above silicon CMOS electronics.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 7, 2016
    Inventors: Vamsy Chodavarapu, Adel Merdassi, Charles Allan
  • Publication number: 20150351648
    Abstract: Small implantable silicon-based devices offer an ability to revolutionize the management of trauma victims. For example, implantable pressure sensors allow the devastating outcomes of compartment syndrome to be minimized through continuous or periodic monitoring whilst being compatible with the ongoing drives to increase out-patient care and reduced hospitalization time. Further, small implantable silicon-based sensor microsystems according to embodiments of the invention whilst being capable of measuring pressures under diverse conditions are easily used by nurses in hospital settings as well as also being easily deployed by paramedical personnel in cases of accidents, natural disasters, war, etc. Beneficially, the implantable sensor microsystem will not interfere with movement of the patient during stabilization, surgery, intensive care stay, outpatient management, etc.
    Type: Application
    Filed: May 8, 2015
    Publication date: December 10, 2015
    Inventors: Edward Harvey, Vamsy Chodavarapu, Charles Allan
  • Publication number: 20140170664
    Abstract: A heating mechanism for use in DNA applications such as DNA amplification, extraction and sterilization is provided. Nanoparticles having photo-thermal properties are put in contact with a reaction mixture and irradiated with an activation light beam to activate these photo-thermal properties, thereby releasing heat. Nanoparticles of several types may be used. Use of the same nanoparticles or of different one to monitor the reaction using a different light beam is also presented.
    Type: Application
    Filed: July 16, 2013
    Publication date: June 19, 2014
    Inventors: Philip ROCHE, Andrew Kirk, Lenore Beitel, Miltiadis Paliouras, Mark Trifiro, Vamsy Chodavarapu, Mohamed Najih, Joachim Thiemann
  • Publication number: 20140080225
    Abstract: Fluorescence based sensing systems and methods that exploit xerogels are provided. Embodiments of the invention encompass a sensing system that includes: an optical excitation source emitting over a first predetermined wavelength range and capable of analog modulation over a predetermined frequency range; a sensor including a gel substrate incorporating within its matrix a receptor for molecular recognition of an analyte and a luminophore for signaling a recognition event relating to the analyte, the luminophore emitting an optical signal over a second predetermined wavelength range; a detection circuit including an optical detector for receiving the optical signal emitted by the luminophore and generating a photocurrent in dependence thereof; an excitation circuit that generates an analog signal for modulating the optical excitation source in dependence upon a digital control; and a read circuit for receiving the photocurrent and generating a digital output.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 20, 2014
    Applicant: The Royal Institution for the Advancement of Learning / McGill University
    Inventors: Vamsy Chodavarapu, Daisy Daivasagay
  • Patent number: 8653833
    Abstract: Advances in a variety of fields such as micromachined silicon in conjunction with MEMS and other devices and attaching biosensors to electrode structures have allowed discrete or continuous monitoring devices to be implemented for biological systems, chemical processes, environmental monitoring etc. However, such devices are typically analysed within controlled laboratory environments due to bulky and large electrochemical impedance measurement systems. In many situations deployment in field, clinic, point-of-care, or consumer scenarios would be beneficial. Accordingly it an intention of the invention to provide a measurement system which offers potential for low cost implementations via multiple technologies to address the different cost targets of these applications as well as number of measurement cells within each. Additionally embodiments of the invention are self-calibrating and self-referencing allowing their use in such scenarios absent highly trained technicians.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: February 18, 2014
    Assignee: The Royal Institution for the Advancement of Learning / McGill University
    Inventors: Vamsy Chodavarapu, Mark Trifiro
  • Patent number: 8263986
    Abstract: Quantitative understanding of neural and biological activity at a sub-millimeter scale requires an integrated probe platform that combines biomarker sensors together with electrical stimulus/recording sites. Optically addressed biomarker sensors within such an integrated probe platform allows remote interrogation from the activity being measured. Monolithic or hybrid integrated silicon probe platforms would beneficially allow for accurate control of neural prosthetics, brain machine interfaces, etc as well as helping with complex brain diseases and disorders. According to the invention a silicon probe platform is provided employing ultra-thin silicon in conjunction with optical waveguides, optoelectronic interfaces, porous filter elements, and integrated CMOS circuitry. Such probes allowing simultaneously analysis of both neural electrical activities along with chemical activity derived from multiple biomolecular sensors with porous membrane filters.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: September 11, 2012
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Mohamad Hajj-Hassan, Vamsy Chodavarapu, Sam Musallam
  • Publication number: 20110115499
    Abstract: Advances in a variety of fields such as micromachined silicon in conjunction with MEMS and other devices and attaching biosensors to electrode structures have allowed discrete or continuous monitoring devices to be implemented for biological systems, chemical processes, environmental monitoring etc. However, such devices are typically analysed within controlled laboratory environments due to bulky and large electrochemical impedance measurement systems. In many situations deployment in field, clinic, point-of-care, or consumer scenarios would be beneficial. Accordingly it an intention of the invention to provide a measurement system which offers potential for low cost implementations via multiple technologies to address the different cost targets of these applications as well as number of measurement cells within each. Additionally embodiments of the invention are self-calibrating and self-referencing allowing their use in such scenarios absent highly trained technicians.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 19, 2011
    Applicant: Royal Institution for the Advancement of Learning / McGill University
    Inventors: Vamsy Chodavarapu, Mark Trifiro
  • Publication number: 20110024771
    Abstract: Quantitative understanding of neural and biological activity at a sub-millimeter scale requires an integrated probe platform that combines biomarker sensors together with electrical stimulus/recording sites. Optically addressed biomarker sensors within such an integrated probe platform allows remote interrogation from the activity being measured. Monolithic or hybrid integrated silicon probe platforms would beneficially allow for accurate control of neural prosthetics, brain machine interfaces, etc as well as helping with complex brain diseases and disorders. According to the invention a silicon probe platform is provided employing ultra-thin silicon in conjunction with optical waveguides, optoelectronic interfaces, porous filter elements, and integrated CMOS circuitry. Such probes allowing simultaneously analysis of both neural electrical activities along with chemical activity derived from multiple biomolecular sensors with porous membrane filters.
    Type: Application
    Filed: June 30, 2010
    Publication date: February 3, 2011
    Applicant: The Royal Institution for the Advancement of Learning / McGill University
    Inventors: Mohamad Hajj-Hassan, Vamsy Chodavarapu, Sam Musallam
  • Publication number: 20070138028
    Abstract: pH-change sensors and related methods are disclosed. One such sensor may have a first ion-sensitive transistor-operational-transconductance-amplifier (the “first IOTA”) and a second ion-sensitive transistor-operational-transconductance-amplifier (the “second IOTA”). Each IOTA may have an ion-sensitive transistor, a load transistor, and an output. In each IOTA, the drain region of the ion-sensitive transistor may be connected to the drain region of the load transistor. A differential sensor may be connected to the IOTAs, and an output from the differential sensor may indicate a voltage difference between the IOTA outputs. The output from the differential sensor may be used to provide an indication of a change in pH.
    Type: Application
    Filed: October 12, 2006
    Publication date: June 21, 2007
    Inventors: Vamsy Chodavarapu, Alexander Cartwright, Albert Titus, Rachel Bukowski, Frank Bright