Patents by Inventor Van Hoskins

Van Hoskins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150098773
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, is provided. In one embodiment of the invention, a robot assembly is provided. The robot assembly includes a first motion assembly movable in a first direction, and a second motion assembly, the second motion assembly being coupled to the first motion assembly and being movable relative to the first motion assembly in a second direction that is generally orthogonal to the first direction. The robot assembly further comprises an enclosure disposed in one of the first motion assembly or the second motion assembly, the enclosure containing at least a portion of a vertical actuator assembly, a support plate coupled to the enclosure, and a first transfer robot disposed on the support plate.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 9, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Mike RICE, Jeffrey HUDGENS, Charles CARLSON, William Tyler WEAVER, Robert LOWRANCE, Eric ENGLHARDT, Dean C. HRUZEK, Dave SILVETTI, Michael KUCHAR, Kirk VAN KATWYK, Van HOSKINS, Vinay SHAH
  • Patent number: 8911193
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, is provided. In one embodiment of the invention, a robot assembly is provided. The robot assembly includes a first motion assembly movable in a first direction, and a second motion assembly, the second motion assembly being coupled to the first motion assembly and being movable relative to the first motion assembly in a second direction that is generally orthogonal to the first direction. The robot assembly further comprises an enclosure disposed in one of the first motion assembly or the second motion assembly, the enclosure containing at least a portion of a vertical actuator assembly, a support plate coupled to the enclosure, and a first transfer robot disposed on the support plate.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 16, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Dave Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Publication number: 20120141237
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, is provided. In one embodiment of the invention, a robot assembly is provided. The robot assembly includes a first motion assembly movable in a first direction, and a second motion assembly, the second motion assembly being coupled to the first motion assembly and being movable relative to the first motion assembly in a second direction that is generally orthogonal to the first direction. The robot assembly further comprises an enclosure disposed in one of the first motion assembly or the second motion assembly, the enclosure containing at least a portion of a vertical actuator assembly, a support plate coupled to the enclosure, and a first transfer robot disposed on the support plate.
    Type: Application
    Filed: November 28, 2011
    Publication date: June 7, 2012
    Inventors: Mike RICE, Jeffrey HUDGENS, Charles CARLSON, William Tyler WEAVER, Robert LOWRANCE, Eric ENGLHARDT, Dean C. HRUZEK, Dave SILVETTI, Michael KUCHAR, Kirk Van KATWYK, Van HOSKINS, Vinay SHAH
  • Patent number: 8066466
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, is provided. In one embodiment of the invention, a robot assembly is provided. The robot assembly includes a first motion assembly movable in a first direction, and a second motion assembly, the second motion assembly being coupled to the first motion assembly and being movable relative to the first motion assembly in a second direction that is generally orthogonal to the first direction. The robot assembly further comprises an enclosure disposed in one of the first motion assembly or the second motion assembly, an actuator within the enclosure, and a fan assembly disposed in the enclosure that is adapted to generate a pressure within the enclosure that is less than a pressure outside of the enclosure.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 29, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Dave Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Publication number: 20100280654
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, is provided. In one embodiment of the invention, a robot assembly is provided. The robot assembly includes a first motion assembly movable in a first direction, and a second motion assembly, the second motion assembly being coupled to the first motion assembly and being movable relative to the first motion assembly in a second direction that is generally orthogonal to the first direction. The robot assembly further comprises an enclosure disposed in one of the first motion assembly or the second motion assembly, an actuator within the enclosure, and a fan assembly disposed in the enclosure that is adapted to generate a pressure within the enclosure that is less than a pressure outside of the enclosure.
    Type: Application
    Filed: July 20, 2010
    Publication date: November 4, 2010
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Dave Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Patent number: 7798764
    Abstract: A method and apparatus for processing substrates using a cluster tool that has an increased system throughput, increased system reliability, improved device yield performance, and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robot assemblies that are configured in a parallel processing configuration and adapted to move in a vertical and a horizontal direction to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. Generally, the various embodiments described herein are advantageous since each row or group of substrate processing chambers are serviced by two or more robots to allow for increased throughput and increased system reliability. Also, the various embodiments described herein are generally configured to minimize and control the particles generated by the substrate transferring mechanisms.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Dave Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Patent number: 7651306
    Abstract: Embodiments of the invention provide a method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. Generally, the various embodiments described herein are advantageous since each row or group of substrate processing chambers are serviced by two or more robots to allow for increased throughput and increased system reliability. Also, the various embodiments described herein are generally configured to minimize and control the particles generated by the substrate transferring mechanisms, to prevent device yield and substrate scrap problems that can affect the cost of ownership of the cluster tool.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: January 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Dave Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Patent number: 7374393
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: May 20, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Mario David Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Patent number: 7374391
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: May 20, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Michael Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Mario David Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Publication number: 20070147976
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks.
    Type: Application
    Filed: October 27, 2006
    Publication date: June 28, 2007
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Dave Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Publication number: 20070147982
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks.
    Type: Application
    Filed: April 5, 2006
    Publication date: June 28, 2007
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean Hruzek, Mario Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Publication number: 20070147979
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks.
    Type: Application
    Filed: December 22, 2005
    Publication date: June 28, 2007
    Inventors: Michael Rice, Jeffrey Hudgens, Charles Carlson, William Weaver, Robert Lowrance, Eric Englhardt, Dean Hruzek, Mario Silvetti, Michael Kuchar, Kirk Katwyk, Van Hoskins, Vinay Shah
  • Publication number: 20060182536
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks.
    Type: Application
    Filed: December 22, 2005
    Publication date: August 17, 2006
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Weaver, Robert Lowrance, Eric Englhardt, Dean Hruzek, Dave Silvetti, Michael Kuchar, Kirk Katwyk, Van Hoskins, Vinay Shah
  • Patent number: 6313596
    Abstract: The present invention provides a method and apparatus for determining whether a substrate is in a clamped or unclamped state on a robot blade and preferably allows the position of a properly clamped substrate to be compensated for misalignments due to substrates not at or very near to their nominal positions on the blade. A sensor unit comprising a radiation source and a detector and capable of transmitting and receiving a signal is mounted outside a transfer chamber and is positioned to direct the signal therein. A robot blade having a reflecting member is actuated through the transfer chamber and into the path of the signal. The reflecting member is preferably positioned on a clamp finger and causes the signal to be reflected to the detector of the sensor unit when the signal is incident on the reflecting member. As the reflecting member moves through the signal the output of the sensor unit switches states, thereby generating values corresponding to the position of the reflecting member.
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: November 6, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Gary Wyka, Jaime Carrera, Van Hoskins
  • Patent number: 6166509
    Abstract: The present invention provides a method and apparatus for determining whether a substrate is in a clamped or unclamped state on a robot blade and preferably allows the position of a properly clamped substrate to be compensated for misalignments due to substrates not at or very near to their nominal positions on the blade. A sensor unit comprising a radiation source and a detector and capable of transmitting and receiving a signal is mounted outside a transfer chamber and is positioned to direct the signal therein. A robot blade having a reflecting member is actuated through the transfer chamber and into the path of the signal. The reflecting member is preferably positioned on a clamp finger and causes the signal to be reflected to the detector of the sensor unit when the signal is incident on the reflecting member. As the reflecting member moves through the signal the output of the sensor unit switches states, thereby generating values corresponding to the position of the reflecting member.
    Type: Grant
    Filed: July 7, 1999
    Date of Patent: December 26, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Gary Wyka, Jaime Carrera, Van Hoskins
  • Patent number: 5502944
    Abstract: A medication dispenser for use in a hospital or other medical setting comprises a plurality of containers for holding medication units, packaging apparatus for containing one or more medication units in a package and robotics for manipulating a selected container to transfer one or more medication units from the container directly to said package. Since medication is directly transferred from the container to the package, no cross-contamination occurs.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: April 2, 1996
    Assignee: Owen Healthcare, Inc.
    Inventors: Thomas L. Kraft, Lisa W. Rogers, Van Hoskins, Lou Waters, Robert Meyers, Kenneth E. Reynolds, Stuart S. Crader, David Loebig