Patents by Inventor Van Mieczkowski

Van Mieczkowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120306611
    Abstract: The present disclosure relates to a thin film resistor that is formed on a substrate along with other semiconductor devices to form all or part of an electronic circuit. The thin film resistor includes a resistor segment that is formed over the substrate and a protective cap that is formed over the resistor segment. The protective cap is provided to keep at least a portion of the resistor segment from oxidizing during fabrication of the thin film resistor and other components that are provided on the semiconductor substrate. As such, no oxide layer is formed between the resistor segment and the protective cap. Contacts for the thin film resistor may be provided at various locations on the protective cap, and as such, are not provided solely over a portion of the resistor segment that is covered with an oxide layer.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 6, 2012
    Applicant: CREE, INC.
    Inventors: Van Mieczkowski, Jason Gurganus
  • Publication number: 20120115319
    Abstract: The present disclosure relates to forming multi-layered contact pads for a semiconductor device, wherein the various layers of the contact pad are formed using one or more thin-film deposition processes, such as an evaporation process. Each contact pad includes an adhesion layer, which is formed over the device structure for the semiconductor device; a titanium nitride (TiN) barrier layer, which is formed over the adhesion layer; and an overlay layer, which is formed over the barrier layer. At least the titanium nitride (TiN) barrier layer is formed using an evaporation process.
    Type: Application
    Filed: November 10, 2010
    Publication date: May 10, 2012
    Applicant: CREE, INC.
    Inventors: Van Mieczkowski, Zoltan Ring, Jason Gurganus, Helmut Hagleitner
  • Publication number: 20120080709
    Abstract: Light emitting devices include an active region of semiconductor material and a first contact on the active region. The first contact is configured such that photons emitted by the active region pass through the first contact. A photon absorbing wire bond pad is provided on the first contact. The wire bond pad has an area less than the area of the first contact. A reflective structure is disposed between the first contact and the wire bond pad such that the reflective structure has substantially the same area as the wire bond pad. A second contact is provided opposite the active region from the first contact. The reflective structure may be disposed only between the first contact and the wire bond pad. Methods of fabricating such devices are also provided.
    Type: Application
    Filed: December 7, 2011
    Publication date: April 5, 2012
    Inventors: Kevin Haberern, Michael John Bergmann, Van Mieczkowski, David Todd Emerson
  • Publication number: 20110278590
    Abstract: Schottky barrier semiconductor devices are provided including a wide bandgap semiconductor layer and a gate on the wide bandgap semiconductor layer. The gate includes a metal layer on the wide bandgap semiconductor layer including a nickel oxide (NiO) layer. Related methods of fabricating devices are also provided herein.
    Type: Application
    Filed: May 12, 2010
    Publication date: November 17, 2011
    Inventors: Van Mieczkowski, Helmut Hagleitner, Kevin Haberern
  • Publication number: 20110266557
    Abstract: Wide bandgap semiconductor devices are fabricated by providing a wide bandgap semiconductor layer, providing a plurality of recesses in the wide bandgap semiconductor layer, and providing a metal gate contact in the plurality of recesses. A protective layer may be provided on the wide bandgap semiconductor layer, the protective layer having a first opening extending therethrough, a dielectric layer may be provided on the protective layer, the dielectric layer having a second opening extending therethrough that is narrower than the first opening, and a gate contact may be provided in the first and second openings. The metal gate contact may be provided to include a barrier metal layer in the plurality of recesses, and a current spreading layer on the barrier metal layer remote from the wide bandgap semiconductor layer. Related devices and fabrication methods are also discussed.
    Type: Application
    Filed: April 28, 2010
    Publication date: November 3, 2011
    Inventors: Van Mieczkowski, Helmut Hagleitner
  • Publication number: 20110227089
    Abstract: Semiconductor Schottky barrier devices include a wide bandgap semiconductor layer, a Schottky barrier metal layer on the wide bandgap semiconductor layer and forming a Schottky junction, a current spreading layer on the Schottky barrier metal layer remote from the wide bandgap semiconductor layer and two or more diffusion barrier layers between the current spreading layer and the Schottky barrier metal layer. The first diffusion barrier layer reduces mixing of the current spreading layer and the second diffusion barrier layer at temperatures of the Schottky junction above about 300° C. and the second diffusion barrier layer reduces mixing of the first diffusion barrier layer and the Schottky barrier metal layer at the temperatures of the Schottky junction above about 300° C.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Inventors: Van Mieczkowski, Helmut Hagleitner, Zoltan Ring
  • Publication number: 20090250716
    Abstract: Light emitting devices include an active region of semiconductor material and a first contact on the active region. The first contact is configured such that photons emitted by the active region pass through the first contact. A photon absorbing wire bond pad is provided on the first contact. The wire bond pad has an area less than the area of the first contact. A reflective structure is disposed between the first contact and the wire bond pad such that the reflective structure has substantially the same area as the wire bond pad. A second contact is provided opposite the active region from the first contact. The reflective structure may be disposed only between the first contact and the wire bond pad. Methods of fabricating such devices are also provided.
    Type: Application
    Filed: June 2, 2009
    Publication date: October 8, 2009
    Inventors: Kevin Haberern, Michael John Bergmann, Van Mieczkowski, David Todd Emerson
  • Patent number: 7557379
    Abstract: Light emitting devices include an active region of semiconductor material and a first contact on the active region. The first contact is configured such that photons emitted by the active region pass through the first contact. A photon absorbing wire bond pad is provided on the first contact. The wire bond pad has an area less than the area of the first contact. A reflective structure is disposed between the first contact and the wire bond pad such that the reflective structure has substantially the same area as the wire bond pad. A second contact is provided opposite the active region from the first contact. The reflective structure may be disposed only between the first contact and the wire bond pad. Methods of fabricating such devices are also provided.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: July 7, 2009
    Assignee: Cree, Inc.
    Inventors: Kevin Haberern, Michael John Bergmann, Van Mieczkowski, David Todd Emerson
  • Patent number: 7557380
    Abstract: Light emitting devices include an active region of semiconductor material and a first contact on the active region. The first contact is configured such that photons emitted by the active region pass through the first contact. A photon absorbing wire bond pad is provided on the first contact. The wire bond pad has an area less than the area of the first contact. A reflective structure is disposed between the first contact and the wire bond pad such that the reflective structure has substantially the same area as the wire bond pad. A second contact is provided opposite the active region from the first contact. The reflective structure may be disposed only between the first contact and the wire bond pad. Methods of fabricating such devices are also provided.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: July 7, 2009
    Assignee: Cree, Inc.
    Inventors: Kevin Haberern, Michael John Bergmann, Van Mieczkowski, David Todd Emerson
  • Publication number: 20080217641
    Abstract: Light emitting devices include an active region of semiconductor material and a first contact on the active region. The first contact is configured such that photons emitted by the active region pass through the first contact. A photon absorbing wire bond pad is provided on the first contact. The wire bond pad has an area less than the area of the first contact. A reflective structure is disposed between the first contact and the wire bond pad such that the reflective structure has substantially the same area as the wire bond pad. A second contact is provided opposite the active region from the first contact. The reflective structure may be disposed only between the first contact and the wire bond pad. Methods of fabricating such devices are also provided.
    Type: Application
    Filed: May 19, 2008
    Publication date: September 11, 2008
    Inventors: Kevin Haberern, Michael John Bergmann, Van Mieczkowski, David Todd Emerson
  • Publication number: 20070145392
    Abstract: Light emitting devices and methods of fabricating light emitting devices having a current blocking mechanism below the wire bond pad are provided. The current blocking mechanism may be a reduced conduction region in an active region of the device. The current blocking mechanism could be a damage region of a layer on which a contact is formed. The current blocking mechanism could be a Schottky contact between an ohmic contact and the active region of the device. A semiconductor junction, such as a PN junction could also be provided between the ohmic contact and the active region.
    Type: Application
    Filed: March 2, 2007
    Publication date: June 28, 2007
    Inventors: Kevin Haberern, Michael Bergmann, Van Mieczkowski, David Emerson, John Edmond
  • Publication number: 20060022209
    Abstract: Light emitting devices include an active region of semiconductor material and a first contact on the active region. The first contact is configured such that photons emitted by the active region pass through the first contact. A photon absorbing wire bond pad is provided on the first contact. The wire bond pad has an area less than the area of the first contact. A reflective structure is disposed between the first contact and the wire bond pad such that the reflective structure has substantially the same area as the wire bond pad. A second contact is provided opposite the active region from the first contact. The reflective structure may be disposed only between the first contact and the wire bond pad. Methods of fabricating such devices are also provided.
    Type: Application
    Filed: July 27, 2004
    Publication date: February 2, 2006
    Inventors: Kevin Haberern, Michael Bergmann, Van Mieczkowski, David Emerson
  • Publication number: 20060002442
    Abstract: Light emitting devices and methods of fabricating light emitting devices having a current blocking mechanism below the wire bond pad are provided. The current blocking mechanism may be a reduced conduction region in an active region of the device. The current blocking mechanism could be a damage region of a layer on which a contact is formed. The current blocking mechanism could be a Schottky contact between an ohmic contact and the active region of the device. A semiconductor junction, such as a PN junction could also be provided between the ohmic contact and the active region.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Kevin Haberern, Michael Bergmann, Van Mieczkowski, David Emerson
  • Publication number: 20050095737
    Abstract: A physically robust light emitting diode is disclosed that offers high-reliability in standard packaging and that will withstand high temperature and high humidity conditions. The diode comprises a Group III nitride heterojunction diode with a p-type Group III nitride contact layer, an ohmic contact to the p-type contact layer, and a sputter-deposited silicon nitride composition passivation layer on the ohmic contact. A method of manufacturing a light emitting diode and an LED lamp incorporating the diode are also disclosed.
    Type: Application
    Filed: November 8, 2004
    Publication date: May 5, 2005
    Inventors: John Edmond, Brian Thibeault, David Slater, Gerald Negley, Van Mieczkowski