Patents by Inventor Vance A. McCray

Vance A. McCray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10352619
    Abstract: An anchor assembly for anchoring refractory materials within a vessel is disclosed that provides for a more reliable refractory anchor and resultant refractory lining system that is easier to install both in terms of the refractory lining and the anchor assembly itself when compared to prior art anchor assemblies. The anchor assembly includes a base pin assembly, and at least one anchor leg connected to and extending from the base pin assembly. The base pin assembly includes a mounting end formed on one end of the pin assembly adapted for securing the base pin assembly to the vessel. The mounting end has an electrical resistance contact point formed thereon. The electrical resistant contact point preferably has a flux material located thereon.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: July 16, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L. Yoder, Christopher John Fowler, Laura E Johnsen, Vance A. McCray, Aaron M. Schlett
  • Publication number: 20180320973
    Abstract: An anchor assembly for anchoring refractory materials within a vessel is disclosed that provides for a more reliable refractory anchor and resultant refractory lining system that is easier to install both in terms of the refractory lining and the anchor assembly itself when compared to prior art anchor assemblies. The anchor assembly includes a base pin assembly, and at least one anchor leg connected to and extending from the base pin assembly. The base pin assembly includes a mounting end formed on one end of the pin assembly adapted for securing the base pin assembly to the vessel. The mounting end has an electrical resistance contact point formed thereon. The electrical resistant contact point preferably has a flux material located thereon.
    Type: Application
    Filed: April 27, 2018
    Publication date: November 8, 2018
    Inventors: PATRICK L. YODER, CHRISTOPHER JOHN FOWLER, LAURA E. JOHNSEN, VANCE A. MCCRAY, AARON M. SCHLETT
  • Patent number: 8877342
    Abstract: Provided is a bimetallic tube for transport of hydrocarbon feedstocks in refinery process furnaces, and more particularly in furnace radiant coils, including: i) an outer tube layer being formed from stainless steels including chromium in the range of 15.0 to 26.0 wt. % based on the total weight of the stainless steel; ii) an inner tube layer being formed from an alumina forming bulk alloy including 5.0 to 10.0 wt. % of Al, 20.0 wt. % to 25.0 wt. % Cr, less than 0.4 wt. % Si, and at least 35.0 wt. % Fe with the balance being Ni, wherein the inner tube layer is formed plasma powder welding the alumina forming bulk alloy on the inner surface of the outer tube layer; and iii) an oxide layer formed on the surface of the inner tube layer, wherein the oxide layer is substantially comprised of alumina, chromia, silica, mullite, spinels, or mixtures thereof.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: November 4, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, David Samuel Deutsch, Vance A. McCray, James Edward Feather, Brenda Anne Raich
  • Patent number: 8808867
    Abstract: Provided is a bimetallic tube for transport of hydrocarbon feedstocks in refinery process furnaces, and more particularly in furnace radiant coils, including: i) an outer tube layer being formed from carbon steels or low chromium steels comprising less than 15.0 wt. % Cr based on the total weight of the steel; ii) an inner tube layer being formed from an alumina forming bulk alloy including 5.0 to 10.0 wt. % of Al, 20.0 wt. % to 25.0 wt. % Cr, less than 0.4 wt. % Si, and at least 35.0 wt. % Fe with the balance being Ni, wherein the inner tube layer is formed plasma powder welding the alumina forming bulk alloy on the inner surface of the outer tube layer; and iii) an oxide layer formed on the surface of the inner tube layer, wherein the oxide layer is substantially comprised of alumina, chromia, silica, mullite, spinels, or mixtures thereof.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: August 19, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Changmin Chun, D. Samuel Deutsch, Vance A. McCray, James E. Feather
  • Publication number: 20120211400
    Abstract: Provided is a bimetallic tube for transport of hydrocarbon feedstocks in refinery process furnaces, and more particularly in furnace radiant coils, including: i) an outer tube layer being formed from stainless steels including chromium in the range of 15.0 to 26.0 wt. % based on the total weight of the stainless steel; ii) an inner tube layer being formed from an alumina forming bulk alloy including 5.0 to 10.0 wt. % of Al, 20.0 wt. % to 25.0 wt. % Cr, less than 0.4 wt. % Si, and at least 35.0 wt. % Fe with the balance being Ni, wherein the inner tube layer is formed plasma powder welding the alumina forming bulk alloy on the inner surface of the outer tube layer; and iii) an oxide layer formed on the surface of the inner tube layer, wherein the oxide layer is substantially comprised of alumina, chromia, silica, mullite, spinels, or mixtures thereof.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 23, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: ChangMin Chun, David Samuel Deutsch, Vance A. McCray, James Edward Feather, Brenda Anne Raich
  • Publication number: 20120097581
    Abstract: Provided is a bimetallic tube for transport of hydrocarbon feedstocks in refinery process furnaces, and more particularly in furnace radiant coils, including: i) an outer tube layer being formed from carbon steels or low chromium steels comprising less than 15.0 wt. % Cr based on the total weight of the steel; ii) an inner tube layer being formed from an alumina forming bulk alloy including 5.0 to 10.0 wt. % of Al, 20.0 wt. % to 25.0 wt. % Cr, less than 0.4 wt. % Si, and at least 35.0 wt. % Fe with the balance being Ni, wherein the inner tube layer is formed plasma powder welding the alumina forming bulk alloy on the inner surface of the outer tube layer; and iii) an oxide layer formed on the surface of the inner tube layer, wherein the oxide layer is substantially comprised of alumina, chromia, silica, mullite, spinels, or mixtures thereof.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 26, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: ChangMin Chun, D. Samuel Deutsch, Vance A. McCray, James E. Feather