Patents by Inventor Vance Adams

Vance Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070249127
    Abstract: An electronic device can include a substrate, an insulating layer, and a semiconductor layer overlying the insulating layer, wherein the insulating layer lies between the substrate and the semiconductor layer. In one aspect, a process of forming the electronic device can include patterning the semiconductor layer to define an opening extending to the insulating layer. The semiconductor layer has a sidewall and a surface, the surface is spaced apart from the insulating layer, and the sidewall extends from the surface towards the insulating layer. The process can also include forming a sidewall spacer adjacent to the sidewall, wherein the sidewall spacer lies within the opening and adjacent to the sidewall, and is spaced apart from the surface. In another aspect, the electronic device can include a field isolation region including the sidewall spacer.
    Type: Application
    Filed: April 24, 2006
    Publication date: October 25, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Rode Mora, Vance Adams, Venkat Kolagunta, Michael Turner, Toni Van Gompel
  • Publication number: 20070202651
    Abstract: A semiconductor fabrication process includes forming isolation structures on either side of a transistor region, forming a gate structure overlying the transistor region, removing source/drain regions to form source/drain recesses, removing portions of the isolation structures to form recessed isolation structures, and filling the source/drain recesses with a source/drain stressor such as an epitaxially formed semiconductor. A lower surface of the source/drain recess is preferably deeper than an upper surface of the recessed isolation structure by approximately 10 to 30 nm. Filling the source/drain recesses may precede or follow forming the recessed isolation structures. An ILD stressor is then deposited over the transistor region such that the ILD stressor is adjacent to sidewalls of the source/drain structure thereby coupling the ILD stressor to the source/drain stressor.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 30, 2007
    Inventors: Da Zhang, Vance Adams, Bich-Yen Nguyen, Paul Grudowski
  • Publication number: 20070148894
    Abstract: Mechanical stress control may be achieved using materials having selected elastic moduli. These materials may be selectively formed by implantation, may be provided as a plurality of buried layers interposed between the substrate and the active area, and may be formed by replacing selected portions of one or more buried layers. Any one or more of these methods may be used in combination. Mechanical stress control may be useful in the channel region of a semiconductor device to maximize its performance. In addition, these same techniques and structures may be used for other purposes besides mechanical stress control.
    Type: Application
    Filed: March 6, 2007
    Publication date: June 28, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Marius Orlowski, Vance Adams
  • Publication number: 20070102755
    Abstract: An electronic device can include a transistor structure of a first conductivity type, a field isolation region, and a layer of a first stress type overlying the field isolation region. For example, the transistor structure may be a p-channel transistor structure and the first stress type may be tensile, or the transistor structure may be an n-channel transistor structure and the first stress type may be compressive. The transistor structure can include a channel region that lies within an active region. An edge of the active region includes the interface between the channel region and the field isolation region. From a top view, the layer can include an edge the lies near the edge of the active region. The positional relationship between the edges can affect carrier mobility within the channel region of the transistor structure.
    Type: Application
    Filed: November 8, 2005
    Publication date: May 10, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Vance Adams, Paul Grudowski, Venkat Kolagunta, Brian Winstead
  • Publication number: 20060240609
    Abstract: Mechanical stress control may be achieved using materials having selected elastic moduli. These materials may be selectively formed by implantation, may be provided as a plurality of buried layers interposed between the substrate and the active area, and may be formed by replacing selected portions of one or more buried layers. Any one or more of these methods may be used in combination. Mechanical stress control may be useful in the channel region of a semiconductor device to maximize its performance. In addition, these same techniques and structures may be used for other purposes besides mechanical stress control.
    Type: Application
    Filed: April 21, 2005
    Publication date: October 26, 2006
    Inventors: Marius Orlowski, Vance Adams
  • Publication number: 20060240650
    Abstract: Mechanical stress control may be achieved using materials having selected elastic moduli. These materials may be selectively formed by implantation, may be provided as a plurality of buried layers interposed between the substrate and the active area, and may be formed by replacing selected portions of one or more buried layers. Any one or more of these methods may be used in combination. Mechanical stress control may be useful in the channel region of a semiconductor device to maximize its performance. In addition, these same techniques and structures may be used for other purposes besides mechanical stress control.
    Type: Application
    Filed: April 21, 2005
    Publication date: October 26, 2006
    Inventors: Marius Orlowski, Vance Adams
  • Publication number: 20060166492
    Abstract: A semiconductor fabrication process has recessed stress-inducing source/drain (SISD) structures that are formed using a multiple phase formation process. The SISD structures are semiconductor structures having a lattice constant that differs from a lattice constant of the semiconductor substrate in which the source/drain structures are recessed. The SISD structures preferably include semiconductor compound having a first element (e.g., silicon) and a second element (e.g., germanium or carbon). The SISD structure has a composition gradient wherein the percentage of the second element varies from the upper surface of the source/drain structure to a lower surface of the SISD structure. The SISD structure may include a first layer with a first composition of the semiconductor compound underlying a second layer with a second composition of the semiconductor compound. The second layer may include an impurity and have a higher percentage of the second element that the first layer.
    Type: Application
    Filed: January 26, 2005
    Publication date: July 27, 2006
    Inventors: Marius Orlowski, Vance Adams, Chun-Li Liu, Matthew Stoker
  • Publication number: 20060043422
    Abstract: A transistor comprises a source and drain positioned within an active region. A gate overlies a channel area of the active region, wherein the channel region separates the source and drain. The transistor further comprises at least one stress modifier and capacitive reduction feature extending from the source to the drain and underlying the gate for reducing capacitance associated with the gate, source and drain. The at least one stress modifier and capacitive reduction feature comprises dielectric and includes a shape defined at least partially by the active region.
    Type: Application
    Filed: August 24, 2004
    Publication date: March 2, 2006
    Inventors: Jian Chen, Michael Mendicino, Vance Adams, Choh-Fei Yeap, Venkat Kolagunta
  • Publication number: 20060043500
    Abstract: A transistor comprises an active region having a periphery with opposing sides and a source and a drain positioned within the active region. A gate overlies a channel area of the active region, the channel region separating the source and drain. The transistor further includes at least one stress modifying feature extending from an edge of the active region on at least one of a source side or a drain side and toward the channel area but not entering the channel area. The at least one stress modifying feature includes a dielectric.
    Type: Application
    Filed: August 24, 2004
    Publication date: March 2, 2006
    Inventors: Jian Chen, Michael Mendicino, Vance Adams, Choh-Fei Yeap, Venkat Kolagunta
  • Publication number: 20060043498
    Abstract: A method and apparatus is presented that provides performance enhancement in a semiconductor device. In one embodiment, a first current region (64, 76, 23), a channel region and a second current region (75, 33, 66) are adjacent each other. The second current region (75, 33, 66) has a content of a first element of an alloy greater than a content of the first element in the first current region (64, 76, 23), wherein the second current region (75, 33, 66) has a content of the first element greater than a content of the first element in the channel region, the alloy further comprises a second element, the first element has a first valence number, and the second element has a second valence number. Furthermore, the sum of the first valence number and the second valence number is eight.
    Type: Application
    Filed: August 24, 2004
    Publication date: March 2, 2006
    Inventors: Marius Orlowski, Vance Adams, Chun-Li Liu, Brian Winstead
  • Publication number: 20060011988
    Abstract: An integrated circuit with both P-channel transistors (823) and N-channel transistors (821) with different spacer insulating region widths. In one example, the outer sidewall spacer (321) of the N-channel transistors is removed while the P-channel regions (115) are masked such that the spacer insulating region widths of the N-channel transistors is less than the spacer insulating region widths of the P-channel transistors. Also, the drain/source silicide regions (805) of the N-channel transistors are located closer to the gates (117) of those transistors than the P-channel source/drain silicide regions (809) are located to the gates (119) of those transistors.
    Type: Application
    Filed: September 20, 2005
    Publication date: January 19, 2006
    Inventors: Jian Chen, Vance Adams, Choh-Fei Yeap
  • Publication number: 20050275017
    Abstract: An integrated circuit with a first plurality of transistors formed on a first wafer and second plurality of transistors formed on a second wafer. At least a substantial majority of the transistor of the first transistor are of a first conductivity type and at least a substantial majority of the transistors of the second plurality are of a second conductivity type. After wafers are bonded together, a portion of the second wafer is removed wherein the strain of the channels of the second plurality of transistors is more compressive than the strain of the channels of the first plurality of transistors.
    Type: Application
    Filed: May 28, 2004
    Publication date: December 15, 2005
    Inventors: Scott Pozder, Salih Celik, Byoung Min, Vance Adams
  • Publication number: 20050190421
    Abstract: An integrated circuit with both P-channel transistors (823) and N-channel transistors (821) with different spacer insulating region widths. In one example, the outer sidewall spacer (321) of the N-channel transistors is removed while the P-channel regions (115) are masked such that the spacer insulating region widths of the N-channel transistors is less than the spacer insulating region widths of the P-channel transistors. Also, the drain/source silicide regions (805) of the N-channel transistors are located closer to the gates (117) of those transistors than the P-channel source/drain suicide regions (809) are located to the gates (119) of those transistors.
    Type: Application
    Filed: March 1, 2004
    Publication date: September 1, 2005
    Inventors: Jian Chen, Vance Adams, Choh-Fei Yeap