Patents by Inventor Vaneet Pathak
Vaneet Pathak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230047448Abstract: A wireless power system has a wireless power transmitting device and a wireless power receiving device. A clock signal may be provided to inverter circuitry in wireless power transmitting circuitry at a power transmission frequency. The clock signal may cause transistors in the inverter circuitry to turn on and off to create AC current signals through the wireless power transmitting coil. The clock signal may be processed to mitigate electromagnetic interference in the system.Type: ApplicationFiled: July 6, 2022Publication date: February 16, 2023Inventors: Sujeet Milind Patole, Cheung-Wei Lam, Vaneet Pathak
-
Publication number: 20230017571Abstract: Methods and devices useful in performing magneto-inductive charging and communication in the absence of a cellular and/or internet network connection are provided. By way of example, an electronic device includes inductive charging and communication circuitry configured to receive a signal configured to induce a charging function based at least in part on an inductive coil coupled to the inductive charging and communication circuitry. Inducing the charging function includes charging an energy storage component of the electronic device. The inductive charging and communication circuitry is also configured receive an indication to switch from the charging function to a communication function. The communication function is based at least in part on the inductive coil. The inductive charging and communication circuitry is further configured establish a communication link between the electronic device using the inductive coil to transmit and receive communication signals.Type: ApplicationFiled: September 19, 2022Publication date: January 19, 2023Inventors: Andro Radchenko, Federico P. Centola, Vaneet Pathak
-
Publication number: 20220035001Abstract: An electronic device may utilize various methods or systems to determine whether the electronic device is indoors or outdoors. The electronic device transmits wireless signals (e.g., radio detection and ranging (RADAR) signals). The electronic device receives reflections of the wireless signals. Using these received reflections of the wireless signals, the electronic device determines whether a power amplitude of the reflections is greater than or equal to a threshold value. In response to a determination that the power amplitude is not greater than or equal to the threshold value, the electronic device operates in an outdoor mode or an indoor mode.Type: ApplicationFiled: July 29, 2020Publication date: February 3, 2022Inventors: Harsha Shirahatti, Sujeet Milind Patole, Jouya Jadidian, Mikheil Tsiklauri, Shun Liu, Vaneet Pathak, Lei Wang, Kumar Gaurav Chhokra
-
Publication number: 20210110969Abstract: Wireless power transmitting devices according to embodiments of the present technology may include a contact surface configured to support one or more wireless power receiving devices. The wireless power transmitting devices may include a plurality of coils. The wireless power transmitting devices may also include a shield positioned between the plurality of coils and the contact surface. The shield may include one or more shield members, each shield member axially aligned with a separate coil of the plurality of coils, and may include a multilayer structure exhibiting various conductivities.Type: ApplicationFiled: November 24, 2020Publication date: April 15, 2021Applicant: Apple Inc.Inventors: Andro Radchenko, Vaneet Pathak, Martin Schauer, Cheung-Wei Lam, Rahul A. Sabnani
-
Publication number: 20210098921Abstract: Spring clips that provide a reliable, low-impedance, low-harmonic path between various conductive enclosure components of electronic devices. These spring clips can include a low-impedance connection on each of two ends, where each end physically and electrically connects to an enclosure component of an electronic device. This can reduce an impedance between enclosure components and reduce the amplitude and harmonics of signals coupled onto them from a nearby antenna or other waveguide.Type: ApplicationFiled: September 24, 2020Publication date: April 1, 2021Applicant: Apple Inc.Inventors: Mahmoud N. Mahmoud, Cheung-Wei Lam, Vaneet Pathak, Ali Foudazi
-
Publication number: 20210099022Abstract: A wireless power system uses a wireless power transmitting device to transmit wireless power to wireless power receiving devices. The wireless power transmitting device has wireless power transmitting coils that extend under a wireless charging surface. Non-power-transmitting coils and magnetic sensors may be included in the wireless power transmitting device. During wireless power transfer operations, control circuitry in the wireless power transmitting device adjusts drive signals applied to the coils to reduce ambient magnetic fields. The drive signal adjustments are made based on device type information and other information on the wireless power receiving devices and/or magnetic sensor readings from the magnetic sensors. In-phase or out-of-phase drive signals are applied to minimize ambient fields depending on device type.Type: ApplicationFiled: December 11, 2020Publication date: April 1, 2021Inventors: Jouya Jadidian, Martin Schauer, Andro Radchenko, Cheung-Wei Lam, Ketan Shringarpure, Vaneet Pathak
-
Patent number: 10965142Abstract: Methods and devices useful in performing magneto-inductive charging and communication in the absence of a cellular and/or internet network connection are provided. By way of example, an electronic device includes inductive charging and communication circuitry configured to receive a signal configured to induce a charging function based at least in part on an inductive coil coupled to the inductive charging and communication circuitry. Inducing the charging function includes charging an energy storage component of the electronic device. The inductive charging and communication circuitry is also configured receive an indication to switch from the charging function to a communication function. The communication function is based at least in part on the inductive coil. The inductive charging and communication circuitry is further configured establish a communication link between the electronic device using the inductive coil to transmit and receive communication signals.Type: GrantFiled: March 9, 2017Date of Patent: March 30, 2021Assignee: Apple Inc.Inventors: Andro Radchenko, Federico P. Centola, Vaneet Pathak
-
Publication number: 20210065965Abstract: A shield for redirecting magnetic field generated from a plurality of transmitter coils includes a ferromagnetic structure divided into segments by a plurality of boundary regions, each segment comprises a first material having a first magnetic permeability and each boundary region comprises a second material having a second magnetic permeability lower than the first magnetic permeability, where the plurality of boundary regions are configured to resist a propagation of magnetic field from a first area of the ferromagnetic structure to a second area of the ferromagnetic structure, where the first area intercepts the magnetic field generated from at least one active transmitter coil of the plurality of transmitter coils.Type: ApplicationFiled: November 12, 2020Publication date: March 4, 2021Applicant: Apple Inc.Inventors: Jouya Jadidian, Vaneet Pathak, Martin Schauer, Cheung-Wei Lam, Darshan R. Kasar, Christopher S. Graham, Andro Radchenko
-
Patent number: 10928498Abstract: An electronic device includes M separate radar transmitters and N separate radar receivers co-located in the electronic device, where the M radar transmitters and the N radar receivers are arranged in a circular architecture providing 360° coverage in a horizontal plane. Moreover, the N radar receivers are synchronized, e.g., using a clock signal. During operation, subsets of the M radar transmitters sequentially transmit radar signals and, when a given subset of the M radar transmitters is transmitting, at least a subset of the N radar receivers performs radar measurements. Furthermore, at least the subset of the N radar receivers can perform the radar measurements using circular beamforming. Based at least in part on the radar measurements, the electronic device determines a location of an object in an environment around the electronic device, where the location includes a range and an angular position.Type: GrantFiled: September 18, 2018Date of Patent: February 23, 2021Assignee: Apple Inc.Inventors: Chunshu Li, Jouya Jadidian, Mikheil Tsiklauri, Vaneet Pathak
-
Publication number: 20210013740Abstract: Methods and devices useful in performing magneto-inductive charging and communication in the absence of a cellular and/or internet network connection are provided. By way of example, an electronic device includes inductive charging and communication circuitry configured to receive a signal configured to induce a charging function based at least in part on an inductive coil coupled to the inductive charging and communication circuitry. Inducing the charging function includes charging an energy storage component of the electronic device. The inductive charging and communication circuitry is also configured receive an indication to switch from the charging function to a communication function. The communication function is based at least in part on the inductive coil. The inductive charging and communication circuitry is further configured establish a communication link between the electronic device using the inductive coil to transmit and receive communication signals.Type: ApplicationFiled: September 24, 2020Publication date: January 14, 2021Inventors: Andro Radchenko, Federico P. Centola, Vaneet Pathak
-
Patent number: 10866317Abstract: An electronic device that performs radar measurements is described. This electronic device includes independent, co-located radar transceivers, and the independent radar transceivers are not synchronized with each other. Moreover, the radar transceivers may have different fields of view that partially overlap. During operation, the radar transceivers transmit radar signals and perform the radar measurements. Then, based at least in part on the radar measurements, the electronic device determines a location of an object in an environment around the electronic device. For example, the location may include an angular position that is determined from the amplitudes of the radar measurements performed using at least a subset of the radar transceivers. Furthermore, the object may be an individual, and the electronic device may identify the individual based at least in part on the radar measurements. Note that the radar measurements performed by a given radar transceiver do not provide angular information.Type: GrantFiled: September 17, 2018Date of Patent: December 15, 2020Assignee: Apple Inc.Inventors: Mikheil Tsiklauri, Jouya Jadidian, Vaneet Pathak
-
Patent number: 10855118Abstract: Wireless power transmitting devices according to embodiments of the present technology may include a contact surface configured to support one or more wireless power receiving devices. The wireless power transmitting devices may include a plurality of coils. The wireless power transmitting devices may also include a shield positioned between the plurality of coils and the contact surface. The shield may include one or more shield members, each shield member axially aligned with a separate coil of the plurality of coils, and may include a multilayer structure exhibiting various conductivities.Type: GrantFiled: September 28, 2018Date of Patent: December 1, 2020Assignee: Apple Inc.Inventors: Andro Radchenko, Vaneet Pathak, Martin Schauer, Cheung-Wei Lam, Rahul A. Sabnani
-
Patent number: 10840007Abstract: A shield for redirecting magnetic field generated from a plurality of transmitter coils includes a ferromagnetic structure divided into segments by a plurality of boundary regions, each segment comprises a first material having a first magnetic permeability and each boundary region comprises a second material having a second magnetic permeability lower than the first magnetic permeability, where the plurality of boundary regions are configured to resist a propagation of magnetic field from a first area of the ferromagnetic structure to a second area of the ferromagnetic structure, where the first area intercepts the magnetic field generated from at least one active transmitter coil of the plurality of transmitter coils.Type: GrantFiled: July 24, 2017Date of Patent: November 17, 2020Assignee: Apple Inc.Inventors: Jouya Jadidian, Vaneet Pathak, Martin Schauer, Cheung-Wei Lam, Darshan R. Kasar, Christopher S. Graham, Andro Radchenko
-
Patent number: 10714983Abstract: A wireless power system may use a wireless power transmitting device to transmit wireless power to a wireless power receiving device. The wireless power transmitting device may have microwave antennas that extend along an axis in a staggered arrangement. In the staggered arrangement, the microwave antennas are positioned on alternating sides of the axis. Each microwave antenna is elongated along a dimension that is perpendicular to the axis. Multiple antennas may overlap a wireless power receiving antenna in the wireless power receiving device. Control circuitry may use oscillator and amplifier circuitry to provide antennas that have been overlapped by the wireless power receiving antenna with drive signals. The drive signals may be adjusted based on feedback from the wireless power receiving device to enhance power transmission efficiency. The system may have a wireless power transmitting device with inductive wireless power transmitting coils.Type: GrantFiled: February 22, 2018Date of Patent: July 14, 2020Assignee: Apple Inc.Inventors: Bing Jiang, Martin Schauer, Indranil S. Sen, Jouya Jadidian, Mark D. Neumann, Mohit Narang, Vaneet Pathak, Yi Jiang
-
Publication number: 20200088870Abstract: An electronic device that performs radar measurements is described. This electronic device includes independent, co-located radar transceivers, and the independent radar transceivers are not synchronized with each other. Moreover, the radar transceivers may have different fields of view that partially overlap. During operation, the radar transceivers transmit radar signals and perform the radar measurements. Then, based at least in part on the radar measurements, the electronic device determines a location of an object in an environment around the electronic device. For example, the location may include an angular position that is determined from the amplitudes of the radar measurements performed using at least a subset of the radar transceivers. Furthermore, the object may be an individual, and the electronic device may identify the individual based at least in part on the radar measurements. Note that the radar measurements performed by a given radar transceiver do not provide angular information.Type: ApplicationFiled: September 17, 2018Publication date: March 19, 2020Inventors: Mikheil Tsiklauri, Jouya Jadidian, Vaneet Pathak
-
Publication number: 20190393733Abstract: Wireless power transmitting devices according to embodiments of the present technology may include a contact surface configured to support one or more wireless power receiving devices. The wireless power transmitting devices may include a plurality of coils. The wireless power transmitting devices may also include a shield positioned between the plurality of coils and the contact surface. The shield may include one or more shield members, each shield member axially aligned with a separate coil of the plurality of coils, and may include a multilayer structure exhibiting various conductivities.Type: ApplicationFiled: September 28, 2018Publication date: December 26, 2019Applicant: Apple Inc.Inventors: Andro Radchenko, Vaneet Pathak, Martin Schauer, Cheung-Wei Lam, Rahul A. Sabnani
-
Patent number: 10418863Abstract: A mobile charging device may be used to move a battery or a power cord to a target device. The target device may be a vehicle or other equipment with a battery. Power from the power cord or battery in the charging device may be used to provide power to the target device to recharge the battery in the target device. The charging device may couple a power cord to the target device, may couple a connector in the charging device to the target device, or may use a wireless power transfer element such as a coil antenna to transfer power wirelessly to the target device. Sensors may be used to facilitate alignment between the charging device and target device. Sensors may also be used to dynamically detect and avoid foreign objects in the path of the charging device.Type: GrantFiled: December 6, 2018Date of Patent: September 17, 2019Assignee: Apple Inc.Inventors: Jouya Jadidian, Steven W. Cabral, Vaneet Pathak
-
Publication number: 20190199137Abstract: A wireless power system may use a wireless power transmitting device to transmit wireless power to a wireless power receiving device. The wireless power transmitting device may have microwave antennas that extend along an axis in a staggered arrangement. In the staggered arrangement, the microwave antennas are positioned on alternating sides of the axis. Each microwave antenna is elongated along a dimension that is perpendicular to the axis. Multiple antennas may overlap a wireless power receiving antenna in the wireless power receiving device. Control circuitry may use oscillator and amplifier circuitry to provide antennas that have been overlapped by the wireless power receiving antenna with drive signals. The drive signals may be adjusted based on feedback from the wireless power receiving device to enhance power transmission efficiency. The system may have a wireless power transmitting device with inductive wireless power transmitting coils.Type: ApplicationFiled: February 22, 2018Publication date: June 27, 2019Inventors: Bing Jiang, Martin Schauer, Indranil S. Sen, Jouya Jadidian, Mark D. Neumann, Mohit Narang, Vaneet Pathak, Yi Jiang
-
Publication number: 20190199144Abstract: A wireless power system uses a wireless power transmitting device to transmit wireless power to wireless power receiving devices. The wireless power transmitting device has wireless power transmitting coils that extend under a wireless charging surface. Non-power-transmitting coils and magnetic sensors may be included in the wireless power transmitting device. During wireless power transfer operations, control circuitry in the wireless power transmitting device adjusts drive signals applied to the coils to reduce ambient magnetic fields. The drive signal adjustments are made based on device type information and other information on the wireless power receiving devices and/or magnetic sensor readings from the magnetic sensors. In-phase or out-of-phase drive signals are applied to minimize ambient fields depending on device type.Type: ApplicationFiled: May 15, 2018Publication date: June 27, 2019Inventors: Jouya Jadidian, Martin Schauer, Andro Radchenko, Cheung-Wei Lam, Ketan Shringarpure, Vaneet Pathak
-
Publication number: 20190027298Abstract: A shield for redirecting magnetic field generated from a plurality of transmitter coils includes a ferromagnetic structure divided into segments by a plurality of boundary regions, each segment comprises a first material having a first magnetic permeability and each boundary region comprises a second material having a second magnetic permeability lower than the first magnetic permeability, where the plurality of boundary regions are configured to resist a propagation of magnetic field from a first area of the ferromagnetic structure to a second area of the ferromagnetic structure, where the first area intercepts the magnetic field generated from at least one active transmitter coil of the plurality of transmitter coils.Type: ApplicationFiled: July 24, 2017Publication date: January 24, 2019Applicant: Apple Inc.Inventors: Jouya Jadidian, Vaneet Pathak, Martin Schauer, Cheung-Wei Lam, Darshan R. Kasar, Christopher S. Graham, Andro Radchenko