Patents by Inventor Vanessa Reyna

Vanessa Reyna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835709
    Abstract: A beam steering architecture for an optical sensor is based upon a pair of Micro-Electro-Mechanical System (MEMS) Micro-Mirror Arrays (MMAs) and a fold mirror. The MEMS MMAs scan both primary and secondary FOR providing considerable flexibility to scan a scene to provide not only active imaging (to supplement passive imaging) but also simultaneously allowing for other optical functions such as establishing a communications link, providing an optical transmit beam for another detection platform or determining a range to target. A special class of MEMS MMAs that provides a “piston” capability in which the individual mirrors may translate enables a suite of optical functions to “shape” the optical transmit beam.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: December 5, 2023
    Assignee: Raytheon Company
    Inventors: Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Craig O. Shott, Jon E. Leigh, Garret A. Odom
  • Patent number: 11835705
    Abstract: Optical sensors and particularly gimbaled optical sensors transmit an active signal at a given wavelength and receive passive signals over a range of wavelengths while controlling pointing without benefit of measuring and locating the active signal return. The sensor includes a Tx/Rx Aperture Sharing Element (ASE) is configured to block the received active signal (e.g. reflections off a target in a scene) and process only the passive emissions. These optical sensors may, for example, be used with guided munitions or autonomous vehicles.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: December 5, 2023
    Assignee: Raytheon Company
    Inventors: Gerald P. Uyeno, Eric Rogala, Mark K. Lange, Sean D. Keller, Vanessa Reyna, Benn H. Gleason, Craig O. Shott, Garret A. Odom, Jon E. Leigh
  • Patent number: 11644542
    Abstract: An optical sensor uses a MEMS MMA to scan a narrow laser beam over a transmit FOR to provide active illumination and to correct the beam profile (e.g., collimate the beam, reduce chromatic aberrations, correct the beam profile or wavefront). A staring detector senses light within a receive FOR that at least partially overlaps the transmit FOR. By completely eliminating the dual-axis gimbal, this sensor architecture greatly reduces the volume and weight of the optical sensor while avoiding the deficiencies of known systems associated with either fiber or free-space coupling of the laser beam into an existing receiver.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: May 9, 2023
    Assignee: Raytheon Company
    Inventors: Craig O. Shott, Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Garret A. Odom, Jon E. Leigh
  • Publication number: 20230087666
    Abstract: An optical sensor uses a MEMS MMA to scan a narrow laser beam over a transmit FOR to provide active illumination and to correct the beam profile (e.g., collimate the beam, reduce chromatic aberrations, correct the beam profile or wavefront). A staring detector senses light within a receive FOR that at least partially overlaps the transmit FOR. By completely eliminating the dual-axis gimbal, this sensor architecture greatly reduces the volume and weight of the optical sensor while avoiding the deficiencies of known systems associated with either fiber or free-space coupling of the laser beam into an existing receiver.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Inventors: Craig O. Shott, Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Garret A. Odom, Jon E. Leigh
  • Publication number: 20230087209
    Abstract: Thermal control of powered systems on-board a flight vehicle is achieved by leveraging the latent heat storage capacity of Phase Change Materials (PCMs) to maintain the operating temperature at or slightly above the melting temperature of the PCM. The invention is particularly well suited for use with powered systems such as laser, microwave emitters, RF sensors and high-density power electronics that must operate at a desired operating temperature while generating considerable waste heat in a confined packaging volume of smaller flight vehicles such as missiles, rockets, guided projectiles, drones or other such platforms.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 23, 2023
    Inventors: Brendon R. Holt, Gerald P. Uyeno, Vanessa Reyna, Olga Vargas, Jordan Sawyer, Brayden Peery
  • Publication number: 20220252865
    Abstract: A beam steering architecture for an optical sensor is based upon a pair of Micro-Electro-Mechanical System (MEMS) Micro-Mirror Arrays (MMAs) and a fold mirror. The MEMS MMAs scan both primary and secondary FOR providing considerable flexibility to scan a scene to provide not only active imaging (to supplement passive imaging) but also simultaneously allowing for other optical functions such as establishing a communications link, providing an optical transmit beam for another detection platform or determining a range to target. A special class of MEMS MMAs that provides a “piston” capability in which the individual mirrors may translate enables a suite of optical functions to “shape” the optical transmit beam.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 11, 2022
    Inventors: Gerald P. Uyeno, Benn H. Gleason, Sean D. Keller, Mark K. Lange, Eric Rogala, Vanessa Reyna, Craig O. Shott, Jon E. Leigh, Garret A. Odom
  • Publication number: 20220107490
    Abstract: Optical sensors and particularly gimbaled optical sensors transmit an active signal at a given wavelength and receive passive signals over a range of wavelengths while controlling pointing without benefit of measuring and locating the active signal return. The sensor includes a Tx/Rx Aperture Sharing Element (ASE) is configured to block the received active signal (e.g. reflections off a target in a scene) and process only the passive emissions. These optical sensors may, for example, be used with guided munitions or autonomous vehicles.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 7, 2022
    Inventors: Gerald P. Uyeno, Eric Rogala, Mark K. Lange, Sean D. Keller, Vanessa Reyna, Benn H. Gleason, Craig O. Shott, Garret A. Odom, Jon E. Leigh
  • Publication number: 20210394548
    Abstract: An identification patch having a pattern of plasmonic resonance elements may be used to ensure that an article is counterfeit-proof. The identification patch is formed by laser-induced superplasticity to create a distinctive pattern of resonance elements that each contain a plurality of nanostructures. When the identification patch is irradiated, the pattern of resonance elements produces a unique spectral response that is associated only with the counterfeit-proof article. The counterfeit-proof article may be a metal component or an integrated circuit. The resonant absorption of the plasmonic resonance elements may be measured to verify the authenticity of the article before use of the article.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 23, 2021
    Inventors: Gerald P. Uyeno, Vanessa Reyna