Patents by Inventor Vann Heng

Vann Heng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100081556
    Abstract: An oxide-based ceramic matrix composite and a method of making oxide-based ceramic composite are provided. The oxide-based ceramic matrix composite comprises a ceramic fiber and a mullite-alumina impregnating the ceramic fiber, wherein the mullite-alumina ceramic matrix comprises of 10-70 wt % mullite-alumina mixture.
    Type: Application
    Filed: July 21, 2006
    Publication date: April 1, 2010
    Inventors: Vann Heng, Robert A. DiChiara, JR., Susan Saragosa, Elizabeth Chu, Carlos G. Levi, Frank W. Zok
  • Publication number: 20080176020
    Abstract: Thermal insulation assemblies and methods for fabricating thermal insulation assemblies are provided. In an exemplary embodiment, a thermal insulation assembly comprises a ceramic tile having a surface coated with an alumina-mullite slurry. A ceramic matrix composite is disposed on the coated surface. The ceramic matrix composite comprises a first ply of a ceramic fiber impregnated with a ceramic matrix.
    Type: Application
    Filed: April 18, 2007
    Publication date: July 24, 2008
    Inventors: Vann Heng, Robert A. DiChiara, Elizabeth Chu, Dave Zorger
  • Patent number: 6866733
    Abstract: A flexible insulation blanket having a ceramic matrix composite (CMC) outer layer, and a method of producing a flexible insulation blanket having a smooth, aerodynamically suitable, outer surface by infiltrating ceramic material within the outer ceramic fabric layer of the flexible insulation blanket and curing the ceramic material to form a CMC layer. The CMC layer is cured while the blanket is under compression such that the resulting CMC layer has a smooth surface.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: March 15, 2005
    Assignee: The Boeing Company
    Inventors: Jerry Denham, Robert A. Dichiara, Jr., Vann Heng, Leanne L. Lehman, David Zorger
  • Patent number: 6844091
    Abstract: A flexible insulation blanket having a ceramic matrix composite (CMC) outer layer, and a method of producing a flexible insulation blanket having a smooth, aerodynamically suitable, outer surface by infiltrating ceramic material within the outer ceramic fabric layer of the flexible insulation blanket and curing the ceramic material to form a CMC layer. The CMC layer is cured while the blanket is under compression such that the resulting CMC layer has a smooth surface.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: January 18, 2005
    Assignee: The Boeing Company
    Inventors: Jerry Denham, Robert A. Dichiara, Jr., Vann Heng, Leanne L. Lehman, David Zorger
  • Patent number: 6770584
    Abstract: A hybrid insulation material comprises of porous ceramic substrate material impregnated with nanoporous material and method of making the same is the topic of this invention. The porous substrate material has bulk density ranging from 6 to 20 lb/ft3 and is composed of about 60 to 80 wt % silica (SiO2) 20 to 40 wt % alumina (Al2O3) fibers, and with about 0.1 to 1.0 wt % boron-containing constituent as the sintering agent. The nanoporous material has density ranging from 1.0 to 10 lb/ft3 and is either fully or partially impregnated into the substrate to block the pores, resulting in substantial reduction in conduction via radiation and convention. The nanoporous material used to impregnate the fiber substrate is preferably formed from a precursor of alkoxysilane, alcohol, water, and an acid or base catalyst for silica aerogels, and from a precursor of aluminum alkoxide, alcohol, water, and an acid or base catalyst for alumina aerogels.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: August 3, 2004
    Assignee: The Boeing Company
    Inventors: Andrea O. Barney, Vann Heng, Kris Shigeko Oka, Maryann Santos, Alfred A. Zinn, Michael Droege
  • Publication number: 20040091699
    Abstract: A flexible insulation blanket having a ceramic matrix composite (CMC) outer layer, and a method of producing a flexible insulation blanket having a smooth, aerodynamically suitable, outer surface by infiltrating ceramic material within the outer ceramic fabric layer of the flexible insulation blanket and curing the ceramic material to form a CMC layer. The CMC layer is cured while the blanket is under compression such that the resulting CMC layer has a smooth surface.
    Type: Application
    Filed: November 11, 2002
    Publication date: May 13, 2004
    Applicant: THE BOEING COMPANY
    Inventors: Jerry Denham, Robert A. Dichiara, Vann Heng, Leanne L. Lehman, David Zorger
  • Patent number: 6716782
    Abstract: A porous ceramic fiber insulating material and method of making a material having a combination of silica (SiO2) and alumina (Al2O3) fibers, and boron-containing powders is the topic of the new invention. The insulative material is composed of about 60 wt % to about 80 wt % silica fibers, about 20 wt % to about 40 wt % alumina fibers, and about 0.1 wt % to about 1.0 wt % boron-containing powders. A specific boron-containing powder used for this invention is boron carbide powder which provide boron-containing by-products, which aid in fusion and sintering of the silica and alumina fibers. The material is produced by forming an aqueous slurry, blending and chopping the fibers via a shear mixer, orienting the fibers in the in-plane direction, draining water from the fibers, pressing the fibers into a billet, heating the fibers to remove residual water, and firing the billet to fuse the fibers of the material. After sintering, bulk density of the new insulation material ranges from 6 to 20 lb/ft3.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: April 6, 2004
    Assignee: The Boeing Company
    Inventors: Vann Heng, Karrie Ann Hinkle, Mary Ann Santos
  • Publication number: 20040033882
    Abstract: A hybrid insulation material comprises of porous ceramic substrate material impregnated with nanoporous material and method of making the same is the topic of this invention. The porous substrate material has bulk density ranging from 6 to 20 lb/ft3 and is composed of about 60 to 80 wt % silica (SiO2) 20 to 40 wt % alumina (Al2O3) fibers, and with about 0.1 to 1.0 wt % boron-containing constituent as the sintering agent. The nanoporous material has density ranging from 1.0 to 10 lb/ft3 and is either fully or partially impregnated into the substrate to block the pores, resulting in substantial reduction in conduction via radiation and convention. The nanoporous material used to impregnate the fiber substrate is preferably formed from a precursor of alkoxysilane, alcohol, water, and an acid or base catalyst for silica aerogels, and from a precursor of aluminum alkoxide, alcohol, water, and an acid or base catalyst for alumina aerogels.
    Type: Application
    Filed: August 16, 2002
    Publication date: February 19, 2004
    Applicant: The Boeing Company
    Inventors: Andrea O. Barney, Vann Heng, Kris Shigeko Oka, Maryann Santos, Alfred A. Zinn, Michael Droege
  • Publication number: 20040033881
    Abstract: A porous ceramic fiber insulating material and method of making a material having a combination of silica (SiO2) and alumina (Al2O3) fibers, and boron-containing powders is the topic of the new invention. The insulative material is composed of about 60 wt % to about 80 wt % silica fibers, about 20 wt % to about 40 wt % alumina fibers, and about 0.1 wt % to about 1.0 wt % boron-containing powders. A specific boron-containing powder used for this invention is boron carbide powder which provide boron-containing by-products, which aid in fusion and sintering of the silica and alumina fibers. The material is produced by forming an aqueous slurry, blending and chopping the fibers via a shear mixer, orienting the fibers in the in-plane direction, draining water from the fibers, pressing the fibers into a billet, heating the fibers to remove residual water, and firing the billet to fuse the fibers of the material. After sintering, bulk density of the new insulation material ranges from 6 to 20 lb/ft3.
    Type: Application
    Filed: August 16, 2002
    Publication date: February 19, 2004
    Applicant: The Boeing Company
    Inventors: Vann Heng, Karrie Ann Hinkle, Mary Ann Santos
  • Patent number: 6367740
    Abstract: A leading edge component for reducing drag and improving heat sink properties of an air foil. The leading edge component includes a composite tile component with a predetermined aerodynamic shape and a metallic lip portion with high thermal conductivity. The metallic lip portion is secured to a forwardmost edge portion of the composite tile component to thereby form a leading edge of the air foil. The leading edge component is better able to withstand the structural stresses and extremely high temperatures that result while travelling at hypersonic speeds, without a significant increase in weight to the air foil with which the leading edge component is used.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: April 9, 2002
    Assignee: The Boeing Company
    Inventors: Scott E. Johnson, Vann Heng, Guillermo Mas