Patents by Inventor Vasilii Sevriuk

Vasilii Sevriuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240135225
    Abstract: A tunable dissipative circuit is presented for shifting a frequency of a radio frequency signal or microwave signal in a cryogenically cooled environment. One or more couplers make couplings between a propagation path and a tunable resonance element and a controllable dissipator element. A first control input to said tunable resonance element allows changing a resonance frequency of said tunable resonance element with a first control signal. A second control input to said controllable dissipator element allows changing a damping rate of said controllable dissipator element with a second control signal.
    Type: Application
    Filed: March 4, 2021
    Publication date: April 25, 2024
    Inventors: Vasilii SEVRIUK, Juha HASSEL, Mikko MÖTTÖNEN
  • Patent number: 11907805
    Abstract: A three-dimensional superconducting qubit and a method for manufacturing the same are disclosed. In an example, a three-dimensional superconducting qubit comprises a structural base comprising one or more insulating materials, and superconductive patterns on surfaces of the structural base. The superconductive patterns form at least a capacitive part and an inductive part of the three-dimensional superconducting qubit. A first surface of the surfaces of the structural base defines a first plane and a second surface of the surfaces of the structural base defines a second plane, the second plane being oriented differently than the first plane. At least one superconductive pattern of the superconductive patterns extends from the first surface to the second surface.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: February 20, 2024
    Assignee: IQM Finland Oy
    Inventors: Caspar Ockeloen-Korppi, Tianyi Li, Wei Liu, Vasilii Sevriuk, Tiina Naaranoja, Mate Jenei, Jan Goetz, Kuan Yen Tan, Mikko Möttönen, Kok Wai Chan
  • Publication number: 20220181537
    Abstract: It is an objective to provide an arrangement and a quantum computing system for qubit readout. According to an embodiment, an arrangement for qubit readout includes at least one qubit and a controllable energy relaxation structure comprising at least one junction. The controllable energy relaxation structure is coupled to the at least one qubit, and is configured to absorb, in response to a control signal, at least one photon from the at least one qubit via photon-assisted tunnelling of a charge through the at least one junction. The arrangement also includes a charge storage configured to store the tunnelled charge and a charge sensing structure coupled to the charge storage. The charge sensing structure is configured to provide a readout signal in response to detecting the tunnelled charge in the charge storage.
    Type: Application
    Filed: August 19, 2021
    Publication date: June 9, 2022
    Inventors: Juha Hassel, Vasilii Sevriuk, Johannes Heinsoo, Kuan Yen Tan, Mikko Möttönen, Hao Hsu
  • Publication number: 20220164690
    Abstract: A three-dimensional superconducting qubit and a method for manufacturing the same are disclosed. In an example, a three-dimensional superconducting qubit comprises a structural base comprising one or more insulating materials, and superconductive patterns on surfaces of the structural base. The superconductive patterns form at least a capacitive part and an inductive part of the three-dimensional superconducting qubit. A first surface of the surfaces of the structural base defines a first plane and a second surface of the surfaces of the structural base defines a second plane, the second plane being oriented differently than the first plane. At least one superconductive pattern of the superconductive patterns extends from the first surface to the second surface.
    Type: Application
    Filed: October 6, 2021
    Publication date: May 26, 2022
    Inventors: Caspar Ockeloen-Korppi, Tianyi Li, Wei Liu, Vasilii Sevriuk, Tiina Naaranoja, Mate Jenei, Jan Goetz, Kuan Yen Tan, Mikko Möttönen, Kok Wai Chan
  • Publication number: 20220012617
    Abstract: A quantum computing circuit is disclosed herein. An example quantum computing circuit includes a first chip with at least one qubit thereon. The quantum computing circuit also includes a second chip with at least other quantum circuit elements other than qubits thereon. The first chip and the second chip are stacked together in a flip-chip configuration and attached to each other with bump bonding that includes bonding bumps.
    Type: Application
    Filed: December 31, 2020
    Publication date: January 13, 2022
    Inventors: Juha Hassel, Wei Liu, Vasilii Sevriuk, Johannes Heinsoo, Mate Jenei, Manjunath Venkatesh, Tianyi Li, Kok Wai Chan, Kuan Yen Tan, Mikko Möttönen